研究生: |
朱其新 Chin Hsin, Chu |
---|---|
論文名稱: |
高介電常數氧化物和金屬閘極的熱穩定性研究及其元件電性分析 The Thermal Stability of High-k Dielectric TiN/HfO2/Si Gate Stack and Its MOSFET Electrical Characteristics |
指導教授: |
洪銘輝
Ming Hwei, Hong 郭瑞年 Ray Nien, Kwo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 高介電常數氧化物 、氮化鈦 、二氧化鉿 、分子束磊晶 、金氧半場效電晶體 |
外文關鍵詞: | high k gate dielectric, titanium nitride, hafnium oxide, molecular beam epitaxy, MOSFET |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室使用分子束磊晶的方法成長HfO2 高介電常數氧化層在矽晶片上。經由RHEED及TEM的分析,HfO2/Si之間並無任何的二氧化矽或其它的矽氧化物產生。這是在此領域第一次發現的成果。除此之外,我們利用氮氣的環境中濺鍍鈦的方式獲得TiN當做金屬閘極,並且在TiN上面再鍍上純金屬鈦以增加熱穩定性。此Ti/TiN雙層結構在溫度達850oC時仍不會有破裂現象發生,電阻值也隨著溫度升高而降低,這兩項發現皆有利於後續的電晶體製程。利用上述材料所製作的電容元件熱穩定度特性也將在本論文中探討,我們發現元件經過850oC退火後,漏電流密度比未退火的元件高八個數量級,主要的原因是HfO2的再結晶現象。然而此數值仍比相同等效厚度的二氧化矽所製作的元件低。在另一方面,元件經過700oC退火後及保有良好的電容特性,但當溫度達850oC時有衰退的現象。此結構所得到的最低等效厚度為1.53nm。界面間的能量態密度經Terman method方法計算約為1012 到1013 ev-1cm-2之間,並且當退火溫度由600oC升至700oC時有增加的趨勢,由700oC升至800oC時卻是下降的趨勢。在電晶體的製作方面,經由lift-off 的方法我們成功地整合了所有的製程並克服機台與試片尺寸的限制。所製做出的self-aligned電晶體也有合理的電性結果,並且在退火溫度700oC時得到了最佳的互導(transconductance) 約48.5ms/mm.
In this MS thesis, we employed the molecular beam epitaxy (MBE) method to deposit amorphous HfO2 dielectrics (k = 15) on silicon. Based on extensive characterizations including RHEED and TEM, we have demonstrated for the first time an atomically abrupt HfO2/Si interface free of SiO2 or silicate formation. In addition, TiN electrode was deposited by reactive sputtering from a pure Ti target in Ar/N2 plasma. To improve the thermal stability of the films, pure titanium metal was deposited to form the capping layer and we found that almost no crack on the film surface when samples were subjected to high temperature annealing (~850oC). The resistivity of Ti/TiN was decreased when increasing the temperature. Furthermore, the thermal stability of high-k gate dielectric MOS capacitors with Ti/TiN as the metal gate (Ti/TiN/HfO2/Si) was studied. We found the leakage current densities of samples after annealing at 850oC was eight orders of magnitude larger than that of as deposited samples, which may result from the recrystallization of HfO2 film. However, all the samples showed lower leakage current densities compared to that of SiO2 at the same EOT. On the other hand, we found the capacitors showed good performance even though the temperature was up to 700oC, but a degradation in electrical characteristics at 850oC. The lowest EOT achieved for this structure was 1.53 nm. Moreover, the Dit of the sample increased when the temperature was raised from 600oC to 700oC, but it decreased when the temperature was further increased to 800oC. The value of Dit was ranging from 1012 to 1013 ev-1cm-2. For MOSFET process, a simple fabrication steps using lift-off process were established. The reasonable electrical characteristics of the MOSFET have been performed and the best transconductance, about 48.5mS/mm, was obtained when the activate temperature was at 700oC.
[1] G. E. Moore 1965 Electronics 38 114-117
[2] International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001.
[3] G. Timp et al 1999 Tech.Dig. Int. Electron Devices Meet. (Piscataway: IEEE) p 55
[4] R. Chau, J. Kavalieros , B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy and G. Dewey 2000 Tech. Dig. Int. Electron Devices Meet. (Piscataway: IEEE) p 45
[5] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns 1995 Solid-State Electron. 38 1465
[6] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang 1997 IEEE Electron Dev. Lett. 18 209
[7] A. T. Fromhold 1981 Quantum Mechanics for Applied Physics and Engineering (New York: Dover)
[8] E. Merzbacher 1998 Quantum Mechanics (New York: Wiley)
[9] For review, see G. D. Wilk et al, J. Appl. Phys. 89, 5243, (2001).
[10] Materials Research Bulletin, March 2002 issue, on “Alternative Gate Dielectrics for Microelectronics”, Ed. by R. M. Wallace and G. D. Wilk.
[11] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi and J. C. Lee, 2000 IEEE Trans. Electron Devices, 181
[12] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[13] E. Josse, T.Skotnicki 1999 Tech. Digest, Int. Electron Device Meet. (Piscataway: IEEE) pp. 661-664
[14] J. Y.-C. Sun, C. Wong, Y. Taur, C.-H. Hsu, 1989 Dig. Technical Papers, VLSI Symp. Technology. (Piscataway: IEEE) pp.17-18
[15] I. De, D. Johri, A. Srivastava, C.M. Osburn, 2000 Solid-State Electron. 44 1077– 1080.
[16] J.C. Hu, H. Yang, R. Kraft, A.L.P. Rotondaro, S. Hattangady, W.W. Lee, R.A. Chapman, C.-P. Chao, A. Chatterjee, M. Hanratty, M. Chen, I.-C. Chen, 1997 Tech. Dig. Int. Electron Devices Meet. (Piscataway: IEEE) pp. 825– 828.
[17] Y.-S. Suh, G.P. Heuss, J.-H. Lee, V. Misra, 2003 IEEE Electron Device Lett. 24 439– 441.
[18] H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, T. Kunio, 2001 IEEE Trans. Electron Devices 48 2363– 2369.
[19] B. Tavel, T. Skotnicki, G. Pares, N. Carrie`re, F. Leverd, C. Julien, J. Torres, R. Pantel, 2001 Tech. Dig. Int. Electron Devices Meet. (Piscataway: IEEE) pp. 825– 828.
[20] W.P. Maszara, Z. Krivokapic, P. King, J.-S. Goo, M.-R. Lin, 2002 Tech. Dig Int. Electron Devices Meet.. (IEEE, Piscataway) pp. 367– 370.
[21] H. Zhong, G. Heuss, V. Misra, 2000 IEEE Electron Device Lett. 21 593–595.
[22] B.-Y. Tsui, C.-F. Huang, 2003 IEEE Electron Device Lett. 24 153–155.
[23] P. S. Lysaght, P. J. Chen, R. Bergmann, T. Messina, R. W. Murto and H.R. Juff 2002 J. Non-Cryst. Solids 303 54-63
[24] Y.-C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K.J. Yang, I. Polishchuk,.T.-P. Ma, C. Hu, S.C. Song, H.F. Luan, D.-L. Kwong, 2001 IEEE Electron Device Lett. 22 227–229.
[25] P. Ranade, Y.-K. Choi, D. Ha, A. Agarwal, M. Ameen, T.-J. King, 2002 Tech. Dig. Int. Electron Devices Meet. (IEEE, Piscataway) pp. 363– 366.
[26] E. H. Nicollian, J.R. Brew, Metal Oxide Semiconductor Physics and Technology, Wiley, New York, 1982
[27] See the original paper by van der Pauw: http://tau.nanophys.kth.se/cmp/hall/vanderpauw.pdf
[28] H. T. Lue, C. Y. Liu, and C. Y. Tseng, 2002 IEEE Electron Device Lett. 23, 553
[29] B. Maiti, P. J. Tobin, C. Hobbs, R. I. Hegde, F. Huang, DLO Meare, D. Jovanovic, M. Mendicino, J. Chen, D. Connelly, O. Adetutu, , J. Mogab, J. Candelaria, L. B. La. 1998 Tech. Dig. Int. Electron Devices Meet. (IEEE, Piscataway) p.781
[30] F. R. Chen, W. G. Lee, Y. J. Lee, M. Hong, and J. Kwo, unpublished