研究生: |
裴伯欣 Bui, Ba Han |
---|---|
論文名稱: |
醣化對蛇毒金屬蛋白酶的結構與活性影響研究 The Role of N-glycosylation on the Activity and Conformation of Cobra Venom Metalloproteinase |
指導教授: |
吳文桂
Wu, Wen Guey |
口試委員: |
簡昆鎰
Chien, Kun-Yi 許素菁 Hsu, Shu Ching |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | N端醣基 、醣化 、蛇毒金屬蛋白 |
外文關鍵詞: | N-linked glycosylation, Glycosylation, Snake venom metalloproteinase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
N端醣基修飾在真核細胞蛋白質表達扮演重要的生理功能,不僅提供蛋白質合成過程與折疊時的關鍵品質管制,也在細胞的內外訊息傳遞,以及細胞與細胞相互作用,扮演重要的生物功能,因此近年來有關醣基修飾的結構與功能關聯研究逐漸受到重視。
蛇毒蛋白亦包含醣基修飾,但是過去探討蛇毒的作用機制,多在不含醣基的小分子量毒蛋白,對於含醣基的高分子量醣蛋白及其醣基的功能較少研究。 本研究乃針對台灣眼鏡蛇毒中的兩種金屬水解酵素 Atragin 和K-like,探討去除部分醣基後的酵素活性功能的變化,以了解這些醣基的可能生物功能。 我們採用Endo F3 去醣水解酵素去除大部分醣基,僅保留與蛋白質共價鍵結的雙醣, 然後比較去醣後酵素功能的變化,並進一步用二色圓光譜及螢光光譜等技術了解結構改變造成活性變化的原因。
結果顯示去除醣基後,對於不同受質蛋白如 fibrinogen, fibronectin, collagen type I, 和 azocasein會有不同程度的影響,因受質蛋白的不同,分別有增加或減少活性的作用,因此醣基應該對於不同的受質蛋白扮演進一步選擇的功能。 就結構而言,去醣後的整體構型並無顯著影響,但是局部的構型會因部分醣基的去除導致動態的變化。 另外一個影響是去除醣基所含的負電荷後,蛋白質的表面電位也跟著改變, 並且曝露出更多的疏水作用區,這些改變,部分反應在肝素與此兩種金屬蛋白水解酵素的結合能力變化以及肝素進一步調控酵素活性的能力。
Background
N-linked glycosylation is one of most important post-translational modification for several physiological processes in all eukaryote cells. There is growing interest in understanding the roles of the attached N-glycans on the structures and stability of the investigated proteins be-cause recent studies have shown that N-linked glycans are not only play a role in the quality control process during protein synthesis, but also affect significantly on their biological func-tions. Snake venom toxins also consist of glycoproteins, but the function of glycosylation re-mains illusive.
Methods
In this study, we investigate two P-III snake venom metalloproteinases (SVMPs), for example, Atragin and K-like from Naja atra, and correlate its enzymatic activities before and after cleaving the N-glycan complexes with Endoglycosydase. We express Endoglycosidase F3 and use it to remove N-glycan complexes of Atragin and K-like SVMPs to understand whether the truncated sugar molecule with one N-acetylglucosamine and a fuccose residue remaining on the asparagine could still maintain their structure and activity. Three different substrates from extracellular matrix, for instance, fibrinogen, fibronectin, collagen type I, and azocasein were tested and the protease activity of Atragin and K-like SVMPs were compared. Finally, their structures were examined by Circular Dichroism and fluorescence spectroscopy.
Results
The P-III SVMPs and its mammalian homologues of ADAMs, and ADAMTSs all consist of at least one N-linked protein glycosylation, but the exact location of the N-glycans appear to vary significantly among different SVMPs and its homologues. Comparison of the enzymatic activities between K-like and Atragin SVMPs indicate that the effect of deglycosylation is substrate dependent. For instance, while there was not a significant change in the enzymatic activity of N-deglycosylated Atragin and – K-like with fibronectin and vitronectin substrates, the fibrinogenolytic and collagenolytic activity of Atragin and K-like, however, were signifi-cantly perturbed after deglycosylating. Moreover, the azocaseinolytic activity with sulfonila-mide-azocasein, a nonspecific substrate, showed a significantial fall off in the N-deglycosylated K-like activity, whereas Atragin retain the same activity. Finally, we also dis-covered that the N-deglycosylated K-like bound to heparin column much more stronger than native K-like, and the observed heparin binding could significantly enhance its enzymatic ac-tivity.
In order to understand the observed change in its enzymatic activity, we examine the possible effect of glycosylation on its structural stability. The N-glycans contributed to a change in negatively charged surface and shifting the pH value of protein toward acidic pI of Atragin and K-like. Since there is no detected conformational change based on Circular Di-chroism result, the N-glycan appears to retain the stability of protein avoided to aggregation and precipitation, likely leading to an decrease in protein stability with high temperatures and denaturant.
1. Achê D.C., Gomes M.S., de Souza D.L., Silva M.A., Brandeburgo M.I., Yoneyama K.A., Rodrigues R.S., Borges M.H., Lopes D.S., and Rodrigues Vde M. (2015). "Bio-chemical properties of a new PI SVMP from Bothrops pauloensis: Inhibition of cell ad-hesion and angiogenesis." International Journal of Biological Macromolecules 72: 445–453.
2. Akiyama M., Takeda S., Kokame K., Takagi J., and Miyata T. (2009). "Crystal struc-tures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor." PNAS 106(46): 19274–19279
3. Ande S.R., Kommoju P.R., Draxl S., Murkovic M., Macheroux P., Ghisla S., and Fer-rando-May E. (2006). "Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom." Apoptosis 11(8): 1439-1451.
4. Asega A.F., Oliveira A.K., Menezes M.C., Neves-Ferreira A.G., and Serrano S.M. (2014). "Interaction of Bothrops jararaca venom metalloproteinases with protein inhibi-tors." Toxicon 80: 1–8.
5. Barrabés S., Sarrats A., Fort E., Llorens R.De., Rudd P.M., and Peracaula R. (2010). "Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electro-phoresis." Electrophoresis 31(17): 2903-2912.
6. Bisello A., Greenberg Z., Behar V., Rosenblatt M., Suva L.J., and Chorev M. (1996). "Role of glycosylation in expression and function of the human parathyroid hor-mone/parathyroid hormone-related protein receptor." Biochemistry. 35(49): 15890-15895.
7. Bondos S.E., and Bicknell A. (2003). "Detection and prevention of protein aggregation before, during, and after purification." Analytical Biochemistry 316(2): 223-231.
8. Calvete J.J., Reinert M., Sanz L., and Töpfer-Petersen E. (1995). "Effect of glycosyla-tion on the heparin-binding capability of boar and stallion seminal plasma proteins." J Chromatogr A. 711(1): 167-173.
9. Chang C.F., Hsu L.S., Weng C.Y., Chen C.K., Wang S.Y., Chou Y.H., Liu Y.Y., Yuan Z.X., Huang W.Y., Lin H., Chen Y.H., and Tsai J.N. (2016). "N-Glycosylation of Hu-man R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Hepa-rin Binding Ability." Int J Mol Sci. 2016 Jun 14;17(6) 17(937): 1-23.
10. Chen H.S., Chen J.M., Lin C.W., Khoo K.H., and Tsai I.H. (2008). "New insights into the functions and N-glycan structures of factor X activator from Russell's viper venom." FEBS J 275(15): 3944-3958.
11. Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., and Etzler M.E. (2008). "Essentials of Glycobiology." Second Edition, Cold Spring Harbor Laboratory Press.
12. Mosher D.E. (1984). "Physiology of fibronectin." Annu Rev Med 35: 561-575.
13. Gowda D.C. and Davidson E.A. (1992). "Structural features of carbohydrate moieties in snake venom glycoproteins." Biochem. Biophys. Res. Commun. 182(1): 294-301.
14. García B., Merayo-Lloves J., Rodríguez D., Alcalde I., García-Suárez O., Alfonso J.F., Baamonde B., Fernández-Vega A., Vazquez F., and Quirós L.M. (2016). "Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens." Front Cell Infect Microbiol. 6(173): 1-12.
15. García L.T., Parreiras e Silva L.T., Ramos O.H., Carmona A.K., Bersanetti P.A., and Selistre-de-Araujo H.S. (2004). "The effect of posttranslational modifications on the hemorrhagic activity of snake venom metalloproteinases." Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 138(1): 23-32.
16. Gelse K., Pöschl E., and Aigner T. (2003). "Collagens: structure, function, and biosyn-thesis." Adv Drug Deliv Rev. 55(12): 1531-1546.
17. Geyer A., Fitzpatrick T.B., Pawelek P.D., Kitzing K., Vrielink A., Ghisla S., and Macheroux P. (2001). "Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma." Eur. J. Biochem. 268(14): 4044-4053.
18. Gowda D.C., Jackson C.M., Hensley P., and Davidson E.A. (1994). "Factor X-activating glycoprotein of Russell's viper venom. Polypeptide composition and charac-terization of the carbohydrate moieties." J. Biol. Chem. 269(14): 10644-10650.
19. Gowda D.C., J. C. M., Kurzban G.P., McPhie P., and Davidson E.A. (1996). "Core sug-ar residues of the N-linked oligosaccharides of Russell's viper venom factor X-activator maintain functionally active polypeptide structure." Biochemistry 35: 5833-5837.
20. Gowda D.C., Petrella E.C., Raj T.T., Bredehorst R., and Vogel C.W. (1994). "Immuno-reactivity and function of oligosaccharides in cobra venom factor." J. Immunol. 152(6): 2977-2986.
21. Gowda D.C., Schultz M., Bredehorst R., and Vogel C.W. (1992). "Structure of the ma-jor oligosaccharide of cobra venom factor." Mol. Immunol. 29(3): 335-342.
22. Guan H.H., Goh K.S., Davamani F., Wu P.L., Huang Y.W., Jeyakanthan J., Wu W.G., and Chen C.J. (2010). "Structures of two elapid snake venom metalloproteases with dis-tinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins." Journal of Structural Biology 169(3): 294–303.
23. Gutiérrez J.M. and Rucavado A. (2010). "Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage." Biochimie 82(9-10): 841–850.
24. Hall T., Shieh H.S., Day J.E., Caspers N., Chrencik J.E., Williams J.M., Pegg L.E., Pauley A.M., Moon A.F., Krahn J.M., Fischer D.H., Kiefer J.R., Tomasselli A.G., and Zack M.D. (2012). "Structure of human ADAM-8 catalytic domain complexed with batimastat." Acta Cryst. 68: 616-621.
25. Higel F., Seidl A., Sörgel F., and Friess W. (2016). "N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins." Eur J Pharm Biopharm. 100: 94-100.
26. Hou S., Hang Q., Isaji T., Lu J., Fukuda T., and Gu J. (2016). "Importance of mem-brane-proximal N-glycosylation on integrin β1 in its activation and complex formation." FASEB J. 30(12): 4120-4131.
27. Huang H.W., Liu B.S., Chien K.Y., Chiang L.C., Huang S.Y., Sung W.C., and Wu W.G. (2015). "Cobra venom proteome and glycome determined fromindividual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation." Journal of Proteomics 128: 92-104.
28. Hynes R. (1985). "Molecular biology of fibronectin." Annu Rev Cell Biol. 1: 67-90.
29. Igarashi T., Araki S., Mori H., and Takeda S. (2007). "Crystal structures of catrocollas-tatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins." FEBS Letters 581: 2416–2422.
30. Janosi J.B., Firth S.M., Bond J.J., Baxter R.C., and Delhanty P.J. (1999). "N-linked gly-cosylation and Sialylation of the Acid-labile Subunit." The Journal of Biological Chem-istry 274: 5292-5298.
31. Kleene R. and Schachner M. (2004). "Glycans and neural cell interactions." Nat Rev Neurosci. 5(3): 195-208.
32. Kuwabara N., Many H, Yamada T., Tateno H., Kanagawa M., Kobayashi K., Akasaka-Manya K., Hirose Y., Mizuno M., Ikeguchi M., Toda T., Hirabayashi J., Senda T., Endo T., and Kato R. (2016). "Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan." Proc Natl Acad Sci 113(33): 9280-9285.
33. Lee H.S., Qi Y.F., and Im W. (2015). "Effects of N-glycosylation on protein confor-mation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study." scientific Reports 5(8926): 1-7.
34. Leonardi A., Sajevic T., Kovačič L., Pungerčar J., Lang Balija M., Halassy B., Trampuš Bakija A., and Križaj I. (2014). "Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour ac-tivity." Toxicon 77: 141–155.
35. Li Q., Colberg T.R., and Ownby C.L. (1993). "Purification and characterization of two high molecular weight hemorrhagic toxins from Crotalus viridis viridis venom using monoclonal antibodies." Toxicon 31(6): 711-722.
36. Lim N.H., Kashiwagi M., Visse R., Jones J., Enghild J.J., Brew K., and Nagase H. (2010). "Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications." Biochem J. 431(1): 113-122.
37. Liu H., Shim A., Chen X., and He X. (2009). "Structural Characterization of the Ecto-domain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Re-ceptor Instead of Metalloproteinase." J Biol Chem. 284(42): 29077-29086.
38. Lynch C.J. and Lane D.A. (2016). "N-linked glycan stabilization of the VWF A2 do-main." Blood 217(13): 1711-1718.
39. Mosesson M.W. (2005). "Fibrinogen and fibrin structure and functions." J Thromb Haemost. 3(8): 1894-1904.
40. Macêdo J.K and Fox J.W. (2014). "Biological Activities and Assays of the Snake Ven-om Metalloproteinases (SVMPs)." Venom Genomics and Proteomics: 1-24.
41. Magalhães A., Magalhães H.P., Richardson M., Gontijo S., Ferreira R.N., Almeida A.P., and Sanchez E.F. (2007). "Purification and properties of a coagulant thrombin-like en-zyme from the venom of Bothrops leucurus." Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 146(4): 565-575.
42. Margraf-Schonfed S., Bohm C., and Watzl C. (2011). "Glycosylation affects ligand binding and function of the activating natural killer cell receptor 2B4 (CD244) protein." 286 The journal of Biological Chemistry: 24142-24149.
43. Markland F.S. Jr and Swenson S. (2013). "Snake venom metalloproteinases." Toxicon 62: 3-18.
44. Menaldo D.L., Bernardes C.P., Santos-Filho N.A., Moura Lde A., Fuly A.L., Arantes E.C., and Sampaio S.V. (2012). "Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom." Biochimie 94(12): 2545–2558.
45. Mende M., Bednarek C., Wawryszyn M., Sauter P., Biskup M.B., Schepers U., and Bräse S. (2016). "Chemical Synthesis of Glycosaminoglycans." Chem Rev. 116(14): 8193-8255.
46. Miyamoto Y., Tanabe M., Date K., Sakuda K., Sano K., Ogawa H. (2016). "Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site." Glycoconj J. 33(2): 227-236.
47. Moremen K.W., Tiemeyer M., and Nairn A.V. (2012). "Vertebrate protein glycosylation: diversity, synthesis and function." Nat Rev Mol Cell Biol. 13(7): 448-462.
48. Mosyak L., Georgiadis K., Shane T., Svenson K., Hebert T., McDonagh T., Mackie S., Olland S., Lin L., Zhong X., Kriz R., Reifenberg E.L., Collins-Racie L.A., Corcoran C., Freeman B., Zollner R., Marvell T., Vera M., Sum P.E., Lavallie E.R., Stahl M., Somers W. (2008). "Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5." Protein Sci. 17: 16-21.
49. Moura-da-Silva A.M., Butera D., and Tanjoni I. (2007). "Importance of Snake Venom Metalloproteases in Cell Bioloy: Effects on Platelets, Inflammatory, and Endothelial Cells." Current Pharmaceutical Design 13: 2893-2905.
50. Muniz J.R., Ambrosio A.L., Selistre-de-Araujo H.S., Cominetti M.R., Moura-da-Silva A.M., Oliva G., Garratt R.C., and Souza D.H. (2008). "The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups." Toxicon 52(7): 807-816.
51. Nilsson E.C., Storm R.J., Bauer J., Johansson S.M., Lookene A., Ångström J., Hedenström M., Eriksson T.L., Frängsmyr L., Rinaldi S., Willison H.J., Pedrosa Domellöf F., Stehle T., and Arnberg N. (2011). "The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis." Nat Med. 17(1): 105-109.
52. Oliveira A.K., Paes Leme A.F., Asega A.F., Camargo A.C.M., Fox J.W., and Serrano S.M.T. (2010). "New insights into the structural elements involved in the skin haemor-rhage induced by snake vom metalloproteinases." Blood Coaglulation, Fibrinolysis and Cellular Haemostasis 104: 485-497.
53. Orth P., Reichert P., Wang W., Prosise W.W., Yarosh-Tomaine T., Hammond G., In-gram R.N., Xiao L., Mirza U.A., Zou J., Strickland C., Taremi S.S., Le H.V., and Madi-son V. (2004). "Crystal Structure of the Catalytic Domain of Human ADAM33." J. Mol. Biol. 335: 129–137.
54. Osipov A.V., Astapova M.V., Tsetlin V.I., and Utkin Y.N. (2004). "The first representa-tive of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra ven-om." Eur. J. Biochem. 271(10): 2018-2027.
55. Oyama E. and Takahashi H. (2015). "Purification and characterization of two high mo-lecular mass snake venom metalloproteinases (P-III SVMPs), named SV-PAD-2 and HR-Ele-1, from the venom of Protobothrops elegans (Sakishima-habu)." Toxicon 103: 30–38.
56. Pinho S.S. and Reis C.A. (2015). "Glycosylation in cancer: mechanisms and clinical implications." Nature Reviews Cancer 15(9): 540-555.
57. Pfeiffer G., Dabrowski U., Dabrowski J., Stirm S., Strube K.H., and Geyer R. (1992). "Carbohydrate structure of a thrombin-like serine protease from Agkistrodon rhodosto-ma. Structure elucidation of oligosaccharides by methylation analysis, liquid secondary-ion mass spectrometry and proton magnetic resonance." Eur. J. Biochem. 205(3): 961-978.
58. Pol-Fachin L., Franco Becker C., Almeida Guimarães J., and Verli H. (2011). "Effects of glycosylation on heparin binding and antithrombin activation by heparin." Proteins 79(9): 2735-2745.
59. Proctor R.A. (1987). "Fibronectin: A Brief Overview of Its Structure, Function, and Physiology." Clin Infect Dis. 9: S317-S321.
60. Roth Z., Yehezkel G., and Khalaila I. (2012). "Identification and Quantification of Pro-tein Glycosylation." International Journal of Carbohydrate Chemistry: 1-10.
61. Sakai J., Zhang S., Chen H., Atsumi F., Matsui T., Shiono H., Sanada S., and Okada T. (2006). "Primary structure of a thrombin-like serine protease, kangshuanmei, from the venom of Agkistrodon halys brevicaudus stejneger." Toxicon 48(3): 313-322.
62. Sant' Ana C.D., Ticli F.K., Oliveira L.L., Giglio J.R., Rechia C.G., Fuly A.L., Selistre de Araújo H.S., Franco J.J., Stabeli R.G., Soares A.M., and Sampaio S.V. (2008). "BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom." Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 151(3): 443-454.
63. Sant'Ana C.D., Bernardes C.P., Izidoro L.F., Mazzi M.V., Soares S.G., Fuly A.L., Zin-gali R.B., Magro A.J., Braz A.S., Fontes M.R., Stabeli R.G., Sampaio S.V., and Soares A.M. (2008). "Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom." Biochimie 90(3): 500-507.
64. Sanz L., Harrison R.A., and Calvete J.J. (2012). "First draft of the genomic organization of a PIII-SVMP gene." Toxicon 60(4): 455–469.
65. Serrano S.M. and Maroun R.C. (2005). "Snake venom serine proteinases: sequence ho-mology vs. substrate specificity, a paradox to be solved." Toxicon 45(8): 1115-1132.
66. Shoulders M.D. and Raines R.T. (2009). "Collagen Structure and Stability." Annu Rev Biochem. 78: 929-958.
67. Silva-Junior F.P., Guedes H.L., Garvey L.C., Aguiar A.S., Bourguignon S.C., Di Cera E., and Giovanni-De-Simone S. (2007). "BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility." Toxicon 50(1): 18-31.
68. Soares S.G. and Oliveira L.L. (2009). "Venom-sweet-venom: N-linked glycosylation in snake venom toxins." Protein Pept Lett. 16(8): 913-919.
69. Sola R.J. and Griebenow K. (2009). "Effects of glycosylation on the Stability of Protein Pharmaceuticals." J Pharm Sci. 98(4): 1223-1245.
70. Srinivasan S., Romagnoli M., Bohm A., and Sonenshein G.E. (2014). "N-Glycosylation Regulates ADAM8 Processing and Activation." The Journal of Biological Chemistry 289(48): 33676-33688.
71. Takeda S. (2014). "Structure-Function Relationship of Modular Domain of P-III Class Snake Venom Metalloprotease." Toxinology: 1-22.
72. Takeda S. (2016). "ADAM and ADAMTS family proteins and snake venom metallo-proteinase: a structure overview." toxins 8(155): 1-35.
73. Takeda S., Igarashi T., Mori H., and Araki S. (2006). "Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold." The EMBO Journal 25(11): 2388-2396.
74. Takeda S., Igarashi T., and Mori H. (2007). "Crystal structure of RVV-X: An example of evolutionary gain of specificity by ADAM proteinases." FEBS Letters 581(30): 5859–5864.
75. Takeda S., Takeya H., and Iwanaga S. (2012). "Snake venom metalloproteinase: Struc-ture, function and relevance to the mammalian ADAM/ADAMTS family proteins." Bi-ochimica et Biophysica Acta 1824(1): 164–176.
76. Tan N.H., Ponnudurai G., and Chung M.C. (1997). "Proteolytic specificity of rhodos-toxin, the major hemorrhagin of Calloselasma rhodostoma (Malayan pit viper) venom." Toxicon 35(6): 979-984.
77. Tanaka N., Nakada H., Itoh N., Mizuno Y., Takanishi M., Kawasaki T., Tate S., Inagaki F., and Yamashina I. (1992). "Novel structure of the N-acetylgalactosamine containing N-glycosidic carbohydrate chain of batroxobin, a thrombin-like snake venom enzyme." J. Biochem. 112(1): 68-74.
78. Taylor M.E., and Drickamer K. (2011). "Introduction of Glycobiology." Third Edition, Oxford University Express.
79. Teklemariam T., Seoane A.I., Ramos C.J., Sanchez E.E., Lucena S.E., Perez J.C., Man-dal S.A., and Soto J.G. (2011). "Functional analysis of a recombinant PIII-SVMP, GST-acocostatin; an apoptotic inducer of HUVEC and HeLa, but not SK-Mel-28 cells." Tox-icon 57(5): 646–656.
80. Tsai I.H., Wang Y.M., and Huang K.F. (2015). "Effects of single N-glycosylation site knockout on folding and defibrinogenating activities of acutobin recombinants from HEK293T." Toxicon 94: 50–59.
81. Tsuchiya M., Niwa Y., and Simizu S. (2016). "N-glycosylation of R-spondin1 at Asn137 negatively regulates its secretion and Wnt/β-catenin signaling-enhancing activi-ty." Oncol Lett. 11(5): 3279-3286.
82. Wang M.M., Liu X.L., Lyu Z.L., Gu H., Li D., and Chen H. (2016). "Glycosaminogly-cans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation." Colloids and Surfaces B: Biointerfaces 150(2017): 175-182.
83. Wu P.L., Kin C.C., Lin T.H., Lee M.S., and Wu W.G. (2016). "Distal M domain of co-bra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to avb3 in the suppression of cell migration." Toxicon 118: 1-12.
84. Wu P.L., Lin C.C., Lin T.H., Lee M.S., Wu W.G. (2016). "Distal M domain of cobra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to αvβ3 integrin in the suppression of cell migration." Toxicon 118: 1-12.
85. Xin F. and Radivojac P. (2012). "Post-translational modifications induce significant yet not extreme changes to protein structure." Bioinformatics 28(2905-2913).
86. Zeng R., Xu Q., Shao X.X., Wang K.Y., and Xia Q.C. (1999). "Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography-electrospray mass spectrometry and Edman degradation." Eur. J. Biochem. 266(2): 352-358.
87. Zhu Z., Liang Z., Zhang T., Zhu Z., Xu W., Teng M., and Niu L. (2005). "Crystal struc-tures and amidolytic activities of two glycosylated snake venom serine proteinases." J. Biol. Chem. 280(11): 10524-10529.
88. Zhu Z.Q., Gao Y.X., Zhu Z.L., Yu Y., Zhang X., Zang J., Teng M.K., and Niu L.W. (2009). "Structural basis of the autolysis of AaHIV suggests a novel target recognizing model for ADAM/reprolysin family proteins." Biochemical and Biophysical Research Communications 386(1): 159-164.