簡易檢索 / 詳目顯示

研究生: 朱宗賢
Chu, Tsung-Hsien
論文名稱: 異質性多處理器單電壓設定問題之最佳解
An Optimal Solution for the Heterogeneous Multi-processor Single-level Voltage Setup Problem
指導教授: 金仲達
King, Chung-Ta
黃泰一
Huang, Tai-Yi
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 78
中文關鍵詞: 異質性多處理器系統異質多核心系統嵌入式系統即時系統低耗能電壓設定
外文關鍵詞: Energy Aware Systems, Heterogeneous Multiprocessors, Real-Time Systems, Voltage Setup, Embedded Systems
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個異質性多處理器系統(Heterogeneous Multi-processor System)是由多個異質性的處理器所構成,因為每一個處理器有不同的運算能力,使此種系統架構可以處理許多形式的應用,而被大量採用於嵌入式系統中。然而,大部分的嵌入式系統都有即時性與低耗能的要求,所以,在進行工作排程時,必須考慮每一個工作在不同處理器上的執行時間與耗能。目前大部分低耗能即時排程演算法,都假設處理器有數個固定的速度等級,且每一個等級的速度值為已知,此種假設,在工作量(Workload)為固定且已知的情況下,無法達到最佳的省電效果。因此,近來有一些研究開始討論如何根據已知的工作量,來決定處理器速度等級數目,及每一個等級的電壓(速度),以達最佳省電效果,此類問題稱為電壓設定問題。在本研究中,我們根據已知的工作量,為每一個處理器設定一個最佳工作電壓(速度),使系統可以在滿足即時性的要求下,達到最大的省電效果。據我們所知,本研究為文獻上第一個針對異質性多處理器系統單電壓設定問題提出最佳解,我們將該問題建模成一個非線性最佳化問題,並證明其為一個NP-Hard問題,同時,我們提出一個消去式演算法(Pruning-Based Algorithm)求得最佳解,並提出一個啟發式演算法(Heuristic Algorithm) 求得一個近似解。在實驗中,我們模擬了超過三十個商用的微處理器,並透過大規模的測試來評估我們的方法,結果顯示,我們的消去式演算法,比窮舉法至少減少98%的時間,同時,我們的啟發式演算法也比現有其他演算法可得更低的耗能。


    A heterogeneous multi-processor (HeMP) system consists of several heterogeneous processors, each of which is specially designed to deliver the best energy-saving performance for a particular category of applications. A low power real-time scheduling algorithm is required to schedule tasks on such a system to minimize its energy consumption and complete all tasks by their deadlines. Existing works assume that processor speeds are known as a priori and cannot deliver the optimal energy-saving performance. The problem of determining the optimal voltage for each processor in order to minimize the total energy consumption is called the voltage setup problem. To the best of our knowledge, this study is the first work to propose the optimal solution for the HeMP single-level voltage setup problem. We first formulate the problem as a non-linear generalized assignment problem that has been proved to be NP-hard. We next develop a pruning-based algorithm to obtain the optimal solution. A heuristic algorithm is also proposed to derive an approximate solution. In our simulations, we model more than several dozen of off-the-shelf embedded processors including ARM and TI DSP processors. The results show that the pruning-based algorithm reduces the time usually needed for an exhaustive search to derive the optimal solution by at least 98%. Also, our heuristic algorithm achieves a minimum energy consumption in comparison with existing research.

    1 Introduction 2 System Model and Problem Formulation 2.1 EnergyModel and TaskModel 2.2 Problem Formulation 2.3 Overview of PBA 3 Pruning Methods 3.1 Variable-Based Pruning 3.2 The Energy Lower Bound Estimation 3.2.1 Formulating the Energy Lower Bound of a Node 3.2.2 Calculating the Energy Lower Bound of a Node 4 Local Optimization Search 4.1 The Recursive Formula 4.2 The Local Optimization Algorithm 5 Experimental Results 5.1 Simulation Setup 5.2 Computational Results 5.3 Effects on Variable-Based Pruning 5.4 Effects on Local Optimization Search 5.5 Effect of Power Ratio 5.6 A Heuristic Algorithm 5.7 Performance Comparisons of Heuristic Algorithms 5.8 Case Study: SmallMobile Robot 6 Related Work 6.1 Low Power Scheduling for Homogeneous Multi-Processor Systems 6.2 Low Power Scheduling for Heterogenous Multi-Processor Systems 6.3 Voltage Setup Problem 7 Conclusion Appendices

    [1] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of periodic task systems upon identical multiprocessor platforms. In ICDCS ’04: Proceedings of the 24th International Conference on Distributed Computing Systems, pages 428–435, 2004.

    [2] J. H. Anderson and A. Srinivasan. Early-release fair scheduling. In The 12th Euromicro Conference on Real-Time Systems, pages 35–43, June 2000.

    [3] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor scheduling: to partition or not to partition. In RTCSA ’00: Proceedings of the Seventh International Conference on Real-Time Systems and Applications, page 337, 2000.

    [4] P. Antonini, G. Ippoliti, and S. Longhi. Learning control of mobile robots using a multiprocessor system. Control Engineering Practice, 14(11):1279–1295, 2006.

    [5] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Power-aware scheduling for periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600, May 2004.

    [6] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time systems. In IPDPS ’03: Proceedings of the 17th International Symposium on Parallel and Distributed Processing, 2003.

    [7] BARON. http://neos.mcs.anl.gov/neos/solvers/go:baron/gams.html.

    [8] S. K. Baruah. Task partitioning upon heterogeneous multiprocessor platforms. In RTAS ’04: Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004.

    [9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. Wiley, 2006.

    [10] M. Buss, T. Givargis, and N. Dutt. Exploring efficient operating points for voltage scaled embedded processor cores. In RTSS ’03: Proceedings of the 24th IEEE International Real-Time Systems Symposium, 2003.

    [11] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient scheduling of real-time tasks in multiprocessor systems. In RTAS ’06: Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 408–417, 2006.

    [12] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling for real-time tasks with different power characteristics. In ICPP ’05: Proceedings of the 2005 International Conference on Parallel Processing, pages 13–20, 2005.

    [13] J.-J. Chen, A. Schranzhofer, and L. Thiele. Energy minimization for periodic real-time tasks on heterogeneous processing units. In IPDPS, pages 1–12, 2009.

    [14] R. Ghattas and A. G. Dean. Energy management for commodity short bit width microcontrollers. In CASES ’05: Proceedings of the 2005 nternational
    Conference on Compilers, Architectures and Synthesis for Embedded Systems, pages 32–42. ACM, 2005.

    [15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench: A free, commercially representative embedded benchmark suite. In WWC ’01: IEEE International Workshop on Workload Characterization, pages 3–14, 2001.

    [16] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo. Multiprocessor synthesis for periodic hard real-time tasks under a given energy constraint. In DATE ’06: Proceedings of the Conference on Design, Automation and Test in Europe, pages 1061–1066, 2006.

    [17] S. Hua and G. Qu. Approaching the maximum energy saving on embedded systems with multiply voltages. In ICCAD ’03: Proceedings of the International Conference on Computer-aided Design, 2003.

    [18] T. Huang, Y. Tsai, and E.-H. Chu. A near-optimal solution for the heterogeneous multi-processor single-level voltage setup problem. In IPDPS ’07: IEEE International Parallel and Distributed Processing Symposium, 2007.

    [19] K. Ito, L. E. Lucke, and K. K. Parhi. Ilp-based cost-optimal dsp synthesis with module selection and data format conversion. IEEE Transactions Very Large Scale Integration Systems, 6(4):582–594, 1998.

    [20] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian. Energyaware cosynthesis of real-time multimedia applications on mpsocs using heterogeneous scheduling policies. Transactions on Embedded Computing
    Systems, 7(2):1–19, 2008.

    [21] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett. Local microcode compaction techniques. ACM Computing Surveys, 12(3):261–294, 1980.

    [22] C. Li, Y. Jiang, Z. Wu, and T. Watanabe. A multiprocessor system for a small size soccer robot control system. In DELTA ’08: the 4th IEEE International Symposium on Electronic Design, Test and Applications, pages 115–118, 2008.

    [23] LINDOGlobal. http://www.gams.com/dd/docs/solvers/lindoglobal.pdf.

    [24] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Processor
    frequency selection for soc platforms for multimedia applications. In RTSS ’04: Proceedings of the 25th IEEE International Real-Time Systems
    Symposium, 2004.

    [25] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons Inc, 1990.

    [26] B. C. Mochocki, X. S. Hu, and G. Quan. A unified approach to variable voltage scheduling for nonideal dvs processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(9):1370– 1377, 2004.

    [27] NEOS. http://neos.mcs.anl.gov/neos/solvers/index.html.

    [28] K. K. Parhi. Register minimization in cost-optimal synthesis of dsp architecture. In the IEEE Workshop on VLSI Signal Processing, 1995.

    [29] T. Perry. Tools & toys: Pleo, the poop-free pet. IEEE Spectrum, 45(4):24, 2008.

    [30] G. Q. and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable voltage processors. In DAC ’01: Proceedings of the 38th Conference on Design Automation, pages 828–833. ACM, 2001.

    [31] J. Seo and N. D. Dutt. A generalized technique for energy-efficient operating voltage set-up in dynamic voltage scaled processors. In ASPDAC ’05: Proceedings of the 2005 Conference on Asia South Pacific Design Automation, 2005.

    [32] H. Shaoxiong, Q. Gang, and S. S. Bhattacharyya. Energy-efficient embedded software implementation on multiprocessor system-on-chip with multiple voltages. ACM Transactions on Embedded Computing Systems, 5(2):321–341, 2006.

    [33] M. Sugihara. Seu vulnerability of multiprocessor systems and task scheduling for heterogeneous multiprocessor systems. In ISQED ’08: Proceedings of the 9th International Symposium on Quality Electronic
    Design, pages 757–762, 2008.

    [34] S. Szabo, V. Singule, V. Oplustil, and R. Kral. Autonomous mobile robot with multiprocessor control system. In 7th InternationalWorkshop on Advanced Motion Control, pages 467–471, 2002.

    [35] R. Xu, R. Melhem, and D. Moss. Energy-aware scheduling for streaming applications on chip multiprocessors. In RTSS ’07: Proceedings of the 28th IEEE International Real-Time Systems Symposium, 2007.

    [36] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele. An approximation scheme for energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor systems. In DATE, pages 694–699, 2009.

    [37] Y. Yu and V. K. P. Resource allocation for independent real-time tasks in heterogeneous systems for energy minimization. Journal of Information Sciece and Engineering, 19(3):433–449, 2003.

    [38] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor realtime systems. IEEE Transactions on Parallel and Distributed System, 14(7):686–700, 2003.

    [39] J. Zhuo and C. Chakrabarti. Energy-efficient dynamic task scheduling algorithms for dvs systems. ACM Transactions on Embedded Computing Systems, 7(2):1–25, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE