簡易檢索 / 詳目顯示

研究生: 陳玠妏
Chen, Chieh-Wen
論文名稱: 小世界塊模型
Small-world Block Model
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
林華君
Lin, Hwa-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 33
中文關鍵詞: 小世界模型皮爾遜連接鏈節相關係數聚集係數社區偵測
外文關鍵詞: small world model, Pearson degree correlation, clustering coefficient, community detection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇的論文中,我們提出一個小世界塊模型(small-world block model)。並針對其模型分析皮爾遜連接鏈節相關函數(Pearson degree correlation)和集聚係數(clustering coefficient)。只要適當的選擇模型中的參數,模型就可以是同類性或是不同類性。


    In this paper we present a small-world block model. We analyze the
    Pearson degree correlation function and the clustering coefficient of this model. We show that by properly choosing values for the parameters in the model, the model can be assortative or disassortative.

    中文摘要---i Abstract---ii Acknowledgements---iii List of Figures---vi List of Tables---vii 1 Introduction---1 2 The Model---4 3 Pearson Degree Correlation Function---7 3.0.1 Analysis of E(X)---8 3.0.2 Analysis of E(XY)---13 3.0.3 A Special Case---17 4 Clustering Coefficient---20 5 Numerical Results---25 5.0.1 Degree Correlation and Clustering Coefficient---25 5.0.2 Community Detection---28 6 Conclusions---31 Bibliography---32

    [1] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393, pp. 440–442, 1998.
    [2] M. Newman, Networks: An Introduction. Oxford, 2010.
    [3] F. Zaidi, “Small world networks and clustered small world networks with random connectivity,” Social Network Analysis and Mining, vol. 3, pp. 51–63, 2013.
    [4] A. Saade, F. Krzakala, and L. Zdeborova, “Spectral clustering of graphs with the bethe hassian,” in NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 1, 2014, pp. 406–414.
    [5] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova, “Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications,” Phys. Rev. E, vol. 84, no. 066106, 2011.
    [6] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic block-models: First steps,” Social networks, vol. 5, no. 2, pp. 109–137,1983.
    [7] M. Newman and D. Watts, “Scaling and percolation in the small-world network model,” Phys. Rev. E, vol. 60, pp. 7332–7342, 2000.
    [8] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” ISCIS 2005, pp. 284–293, 2005.
    [9] M. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, p.036104, 2006.
    [10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J. Stat. Mech., vol. 2008, no. 10, p. 10008, 2008.

    QR CODE