簡易檢索 / 詳目顯示

研究生: 劉芷昀
Liu, Chih-Yun
論文名稱: 超臨界NOVEC 649在迷你傾斜流道中的 熱傳實驗研究
Experimental Investigation on Convective Heat Transfer of Supercritical NOVEC 649 in an Inclined Miniature Tube
指導教授: 傅本然
Fu, Ben-Ran
潘欽
Pan, Chin
口試委員: 王啟川
Wang, Chi-Chuan
陳紹文
Chen, Shao-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 63
中文關鍵詞: 超臨界流體新型冷媒熱傳迷你流道傾斜流道實驗研究
外文關鍵詞: Supercritical fluid, Novec 649, Heat transfer, Miniature tube, Inclined tube, Experimental investigation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年為了提升有機朗肯循環的效率運用於中低溫熱能轉換,目前學術界多朝穿臨界流體循環進行研究。本論文欲探討計畫使用於穿臨界有機朗肯循環的工作流體新型冷媒NOVEC 649在近臨界點的熱傳現象。本研究設計一個新型冷媒NOVEC 649的封閉循環,探討該流體於内徑1mm、外徑25mm、長度20cm的迷你銅製傾斜流道中,穿臨界狀態時之性質變化與熱傳現象。NOVEC 649之臨界壓力為18.7 bar,臨界溫度為 441.8 K。實驗操作參數為進口壓力19~23bar,進口雷諾數3039~51543,質量通率707.4~1061 kg/m2s,流道傾斜角度有θ=0∘水平流動、90∘垂直向上流動、-90∘垂直向下流動、-30∘、-45∘、-60∘。於此實驗探討流體在穿臨界時根據不同壓力、質量流率、傾斜角度與流向之實驗操作參數組合,性質的劇烈變化對於熱傳產生之效應。結果顯示,壓力效應對於熱傳係數之影響不如流量效應明顯。在此實驗相對較小的流量時,會在假臨界溫度附近有熱傳惡化的發生,反之相對較大的流量時,會有熱傳增加的現象。此外,從不同傾斜角的熱傳係數比較中發現,向下流熱傳的確如前人文獻所述會比向上流好。接著,引用相關文獻提出之無因次參數進行浮力效應與加速度效應之分析,並提出適用於傾斜管之浮力效應無因次參數判斷門檻值,結果顯示大部分的實驗數據點浮力效應皆可忽略,而垂直管的加速度效應十分強烈。最後,根據此實驗數據發展適用之經驗式,在經驗式中導入傾斜角度θ,以利運用於各種流道傾斜狀況與流向,有別於過去相關文獻僅針對不同傾斜角度發展個別之經驗式,並與實驗數據比較之誤差約為±30%。


    This paper focused on the buoyancy effect and acceleration effect on the heat transfer characteristics of supercritical NOVEC 649 in an inclined miniature tube, aiming to provide guidance for the vapor generator design in trans-critical ORC systems. Experiments on turbulent heat transfer by NOVEC 649 in horizontal, vertical, and inclined flow were conducted in a tube with an inner diameter of 1 mm. The experiments were performed for inlet pressures ranging from 19 to 23 bar, mass flux ranging from 707.4 to 1060 kg/m2s, and Rein from 3039 to 51534. These experiments demonstrate that the heat transfer coefficients are significantly influenced by mass flux instead of system pressure in this study. To determine the buoyancy effects and acceleration effect on heat-transfer characteristics, some dimensionless parameters such as ,Bu and Ac are compared with the related threshold values along the test section. New threshold values of buoyancy dimensionless parameter (Bu) for an inclined pipe are proposed. Results presented in dimensionless form illustrate the strong influence of acceleration effect and the ignorable influence of buoyancy effect on this study. Correlations have been developed for inclined flows with accuracy 30% (up to 95% of the 640 valid data points where predicted within the ±30% accuracy limits).

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號說明 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 研究方法 5 1.4 論文架構 5 第二章 文獻回顧 9 2.1 浮力效應於超臨界流體熱傳之文獻探討 9 2.2 傾斜流道於超臨界流體熱傳之文獻探討 10 2.3 使用非CO2與水作為工作流體之超臨界熱傳文獻探討 11 2.4 管徑尺寸於超臨界流體熱傳之文獻探討 13 2.5 加速度效應於超臨界熱傳之文獻探討 15 第三章 實驗設備與環路架構 18 3.1 迷你流道設計 18 3.2 測試段夾具設計 18 3.3 實驗環路架構 18 3.4 實驗設備簡介 19 3.5 實驗步驟 21 第四章 理論分析與計算 27 4.1 NOVEC 649的穿臨界熱物理性質變化 27 4.2 熱傳分析計算 28 4.3 無因次參數計算 30 4.4 誤差分析計算 31 第五章 結果與討論 35 5.1 不同進口壓力對熱傳係數的比較 35 5.2 不同質量流率對熱傳係數的比較 42 5.3 不同測試段傾斜角度對熱傳係數的比較 46 5.4 浮力效應與加速度效應之無因次參數分析 48 5.5 經驗式發展 57 第六章 結論與建議 59 參考文獻 61

    [1] 林榮貴(2018)。穿臨界有機朗肯循環系統之發展現況。低溫熱能渦輪ORC發電技術開發與應用計畫(3/3)研究報告。財團法人工業技術研究院。
    [2] I.L. Pioro, H.F. Khartabil, R.B. Duffey, Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey), Nuclear Engineering and Design,
    230 (2004), pp.69–91.
    [3] J.D. Jackson, W.B. Hall, Forced convection heat transfer to fluids at supercritical pressure, Turbulence Forced Convection in Channels and Bundles, vol. 2, Hemisphere, New York, 1979, pp. 563–611.
    [4] J.D. Jackson, W.B. Hall, Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions, in: S. Kakaç, D.B. Spalding (Eds.), Turbulent Forced Convection in Cannels and Bundles, Hemisphere, New York, 1979, pp.613–640.
    [5] J.D. Jackson, W.B. Hall, J. Fewster, A. Watson, M.J. Watts, “Heat Transfer to Supercritical Pressure Fluids”, U.K.A.E.A. A.E.R.E.-R 8158, Design Report 34, 1975
    [6] Z.H. Li, P.X. Jiang, C.R. Zhao, Y. Zhang, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science, 34(8) (2010), pp.1162–1171
    [7] T. Walisch, M. Müller, W. Dörfler, Chep. Trepp, The heat transfer to supercritical carbon dioxide in tubes with mixed convection, High Pressure Chemical Engineering,12 (1996), pp.199–204.
    [8] S. Liao, T. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, International Journal of Heat and Mass Transfer,45 (2002), pp.5025–5034.
    [9] F. Yin, T.K. Chen, H.X. Li, An investigation on heat transfer to supercritical water in inclined upward smooth tubes, Heat Transfer Engineering 27(9) (2006) , pp.44-52.
    [10] Y. Yang, G.Y. Yu, F.X. Zhang, M. Yu, C.G. Zhu, Hydrodynamic and heat-transfer characteristics of inclined smooth tube at supercritical pressures, Journal of Chinese Society of Power Engineering, 31(11) (2011).
    [11] W.M. Yan, Y.J. Ye, A. Kasaeian, Fluid flow and thermal characteristics in inclined tubes with transcritical carbon dioxide as working fluid, International Communications in Heat and Mass Transfer, 91 (2018), pp.84-89.
    [12] Y.L. Cui, H.X. Wang, Experimental study on convection heat transfer of R134a at supercritical pressures in a vertical tube for upward and downward flow, Applied Thermal Engineering, 129 (2018), pp.1414-1425.
    [13] A.A. Bishop, R.O. Sandberg, L.S. Tong, Forced convection heat transfer to water at near-critical temperatures and super-critical pressures, WCAP-2056, Westinghouse Electric Corporation, 1964.
    [14] N. Tarsitano, K. Sidawi, I. Pioro, Comparison and development of heat transfer correlations of supercritical refrigerants, in: 25th ICONE-25 International Conference on Nuclear Engineering, 2017. ICONE. 2017-66814.
    [15] B. Liu, Y. Zhu, J.J. Yan, Y. Lei, B. Zhang, P.X. Jiang, Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes, International Journal of Heat and Mass Transfer, 91 (2015), pp.734-746.
    [16] P.X. Jiang, C.R. Zhao, B. Liu, Flow and heat transfer characteristics of r22 and ethanol at supercritical pressures, Journal of Supercritical Fluids,70 (2012) 75-89.
    [17] S. Liao, T. Zhao, Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels, J. Heat Transfer,124, (2002), pp.413–20.
    [18] C. Dang, E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide,
    part 1. experimental measurement. International Journal of Refrigeration, 27(2004), pp.736–47.
    [19] S. Garimella, B. Mitra, U.C. Andresen, Y. Jiang, B.M. Fronk, Heat transfer and
    pressure drop during supercritical cooling of HFC refrigerant blends, Int. J. Heat
    Mass Transfer,91 (2015), pp.477–493
    [20] M. Monjurul Ehsan, Z. Guan, A.Y. Klimenko, A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications, Renewable and Sustainable Energy Reviews, 92 (2018), pp.658–675.
    [21] R. Tian, D. Wang, Y. Zhang, Y. Ma, H. Li, L. Shi, (2018, March). Tube diameter size effects on heat transfer of supercritical R134a in horizontal tubes for vapor generator design in organic rankine cycles, 7th IEEA '18 Proceedings International Conference on Informatics, Environment, Energy and Applications, (pp.71-76). Beijing, China.
    [22] Y.Y. Bae, H.Y. Kim, Convective heat transfer to CO2 at supercriticalpressure flowing vertically upward in tubes and an annular channel, Exp. Therm.Fluid Sci., 33 (2009), pp.329–339.
    [23] Z.H. Li, P.X. Jiang, C.R. Zhao, Y. Zhang, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Exp. Therm. Fluid Sci., 34 (2010), pp.1162–1171.
    [24] P.X. Jiang, Y.J. Xu, J. Lv, R.F. Shi, S. He, J.D. Jackson, Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini tubes and in porous media, Appl. Therm. Eng., 24 (2004),pp.1255–1270.
    [25] P.X. Jiang, Y. Zhang, Y.J. Xu, R.F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, Int. J. Therm. Sci., 47 (8) (2008), pp.998–1011.
    [26] P.X. Jiang, Y. Zhang, C.R. Zhao, R.F. Shi, Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers, Exp. Therm. Fluid Sci., 32 (2008) ,pp.1628–1637.
    [27] S. He, W.S. Kim, P.X. Jiang, J.D. Jackson, Simulation of mixed convection heattransfer to carbon dioxide at supercritical pressure, J. Mech. Eng. Sci., 218 (2004), pp.1281–1296.
    [28] D.M. McEligot, C.W. Coon, H.C. Perkins, Relaminarization in tubes, Int. J. Heat Mass Transfer, 13 (1970), pp.431–433.
    [29] H.D. Murphy, F.W. Chambers, D.M. McEligot, Laterally converging flow, part I, Mean Flow, J. Fluid Mech., 127 (1983), pp.379–401.
    [30] P.X. Jiang, B. Liu, C.R. Zhao, F. Luo, Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime, Int. J. Heat Mass Transfer, 56 (2013), pp.741–749.
    [31] C.R. Zhao, Z. Zhang, P.X. Jiang, R.N. Xu, H.L. Bo, Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, International Journal of Heat and Mass Transfer, 126 (2018), pp.201–210.
    [32] X. Huai, S. Koyama, Heat transfer characteristics of supercritical CO2 flow in small-channeled structures, Experimantal Heat Transfer, 20 (2007), pp.19–33.
    [33] D.E. Kim, M.H. Kim, Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube, Nuclear Engineering and Design, 240 (2010), pp.3336–3349.
    [34] S. Liu, Y. Huanga, G. Liu, J. Wanga, L.K.H. Leung, Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes, International Journal of Heat and Mass Transfer, 106 (2017), pp.1144–1156
    [35] W.B. Hall, J.D. Jackson, Laminarization of a Turbulent Pipe Flow by Buoyancy Forces, ASME, 1969, 69-HT-55.
    [36] D. Huang, Z. Wu, B. Sunden, W. Li, A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress, Applied Energy, 162 (2016), pp.494–505.

    QR CODE