研究生: |
葉貽謙 Yap Yi Qian |
---|---|
論文名稱: |
非洲睡蓮種子與台灣水韭球莖之異地保存 Ex-situ preservation of Nymphaea capensis seeds and Isoetes taiwanensis corms |
指導教授: |
李家維
Li, Chia-Wei |
口試委員: |
黃貞祥
鄭惠春 黃曜謀 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 冷凍保存 、耐乾旱 、台灣水韭球莖 、非洲睡蓮種子 、植物玻璃化抗凍配方3 、再生能力 、玻璃化處理 |
外文關鍵詞: | cryopreservation, desiccation tolerant, Isoetes taiwanensis corm, Nymphaea capensis seed, plant vitrification solution 3 (PVS3), regrowth, vitrification |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非洲睡蓮是一種會結出異儲型種子之水生植物。它的種子不耐乾燥處理,同時無法在傳統之貯存溫度下穩定保存。因此,本研究嘗試利用液態氮進行非洲睡蓮種子之冷凍保存。種子預先進行玻璃化處理以避免因冷凍保存而產生會導致細胞死亡的冰晶。實驗發現經過12小時與18小時植物玻璃化抗凍配方3 (Plant vitrification solution 3, PVS3) 處理後,冷凍保存之種子出現最高的發芽率 (66.7%)。另外,50% w/v蔗糖 + 50% w/v丙二醇的玻璃化溫度 (-63.6℃) 相對PVS3 (-90.7℃) 呈現最顯著之提升。
台灣水韭是一種半水生植物,它從2004年開始被IUCN列成瀕臨絕種之物種。在室溫下,台灣水韭植株能夠忍受長達1年之陰乾處理;經過4℃保存11個月後,10%的陰乾球莖仍然保持其再生能力,並在復水後重新長出新的葉子與嫩根。不過,經過各種前處理再放入液態氮保存的球莖皆失去其活性。
Nymphaea capensis is an aquatic plant which produces recalcitrant seeds. Its’ seeds were desiccation intolerant and metabolically active. Cryopreservation is suggested because the conventional methods could not provide a stable storage environment for the seeds. Vitrification pretreatment was used to avoid the formation of ice crystals in cryopreservation. This study showed that cryopreserved seeds which progressed 12 h and 18 h of plant vitrification solution 3 (PVS3) treatments brought the highest germination rate (66.7%) among various pretreatment periods. The glass transition temperature (Tg) of 75% w/v sucrose + 25% w/v propylene glycol (PG) solution (-63.6℃) had the largest improvement among the alternative vitrification solutions compared to PVS3 (-90.7℃).
Isoetes taiwanensis is a semiaquatic plant which is listed as a critically endangered species based on the criteria of IUCN. In contrast to the seeds of N. capensis, the plants of I. taiwanensis could tolerate air-dried for ca. one year in room temperature. Air-dried corms were retained 10% survival rate after 11 months storage under 4℃ and able to regrow new leaves and roots after rehydration. However, corms completely lost viability in cryopreservation even if various pretreatments were used.
1. Agnihotri, V.K., ElSohly, H.N., Khan, S.I., Smillie, T.J., Khan, I.A. and Walker, L.A. (2008). Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry 69(10): 2061–2066.
2. Al-Menaie, H.S., Zalzaleh, M., Mathew, M. and Suresh, N. (2011). Performance evaluation of water lily varieties (Nymphaea sp) for landscape beautification in Kuwait. American Journal of Scientific and Industrial Research 2(1): 122–128.
3. Alam, M.N., Islam, Md.R., Biozid, Md.S., Chowdury, Md.I.A., Mazumdar, M.M.U., Islam, Md.A. and Anwar, Z.B. (2016). Effects of methanolic extract of Nymphaea capensis leaves on the sedation of mice and cytotoxicity of brine shrimp. Advances in Biological Research 10(1): 1–9.
4. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B. and Ferrer, E.A. (2011). Has the Earth's sixth mass extinction already arrived? Nature 471(7336): 51–57.
5. Benson, E.E., Johnston, J., Muthusamy, J. and Harding, K. (2008). Physical and engineering perspectives of in vitro plant cryopreservation. Plant Tissue Culture Engineering, edition Dutta Gupta, S. and Ibaraki, Y., pp. 441476.
6. Berjak, P. (2005). Protector of the seeds: seminal reflections from Southern Africa. Science 307(5706): 47–49.
7. Berjak, P. and Pammenter, N.W. (2001). Seed recalcitrance – current perspectives. South African Journal of Botany 67(2): 79–89.
8. Bonner, F.T. (2008). Chapter 4: storage of seeds. The Woody Plant Seed Manual, edition Bonner, F.T. and Karrfalt, R.P. (US Department of Agriculture Forest Service, Washington, DC), Agriculture Handbook 727: 85–96.
9. Chen, D.H. (2008). Long-term ecology monitoring of Dream Lake and restoration of Isoetes taiwanensis DeVol. Final Report of Commissioned Research Project, Yangmingshan National Park, Taipei. (in Chinese)
10. Chen, S.Y., Kuo, S.R. and Chien, C.T. (2007). Storage behaviour of seeds of Cinnamomum osmophloeum and Neolitsea aciculata var. variabillima (Lauraceae). Seed Science and Technology 35(1): 237–243.
11. Chiang, S.H.T. (1976). The growth cycle of cambium and the structure of the vascular tissue in the corms of Isoetes taiwanensis. Taiwania 21(1): 14–26.
12. China Plant Specialist Group (2004). Isoetes taiwanensis. The IUCN Red List of Threatened Species 2004: e.T46616A11070562.
http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T46616A11070562.en.
13. Corbineau, F. and Côme, D. (1989). Germination and storage of recalcitrant seeds of some tropical forest tree species. Annales des Sciences Forestières 46: 89s–91s.
14. Cronin, G., Wissing, K.D. and Lodge, D.M. (1998). Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submersed vs. floating leaves. Freshwater Biology 39(2): 243–257.
15. Devi, S.A., Thongam, B. and Handique, P.J. (2015). Nymphaea rubra Roxb. ex Andrews cultivated as an ornamental, food and vegetable in the North Eastern region of India. Genetic Resources and Crop Evolution 62(2): 315–320.
16. Dinakar, C., Djilianov, D. and Bartels, D. (2012). Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Science 182: 29–41.
17. Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L.J. and Sullivan, C.A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81(2): 163–182.
18. Emboden, W.A. (1981). Transcultural use of narcotic water lilies in Ancient Egyptian and Maya drug ritual. Journal of Ethnopharmacology 3(1): 39–83.
19. Engelmann, F. (2004). Plant cryopreservation: progress and prospects. In vitro Cellular & Developmental Biology – Plant 40(5): 427–433.
20. Engelmann, F. (2011). Use of biotechnologies for the conservation of the plant biodiversity. In Vitro Cellular & Developmental Biology – Plant 47(1): 5–16.
21. Engelmann, G. (1882). The genus Isoetes in North America. Transactions of the Academy of Science of St. Louis 4: 358–390.
22. Ervik, F. and Knudsen, J.T. (2003). Water lilies and scarabs: faithful partners for 100 million years? Biological Journal of the Linnean Society 80(3): 539–543.
23. Fowler, J., Cohen, L. and Jarvis, P. (1998). Practical Statistic for Field Biology, second edition, John Wiley & Son Ltd (Chichester), pp. 190195.
24. Gaff, D.F. and Latz, P.K. (1978). The occurrence of resurrection plants in the Australian Flora. Australian Journal of Botany 26: 485–492.
25. Gonzalez-Arnao, M.T., Panta, A., Roca, W.M., Escobar, R.H. and Engelmann, F. (2008). Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture 92(1): 1–13.
26. Hamill, F.A., Apio, S., Mubiru, N.K., Bukenya-Ziraba, R., Mosango, M., Maganyi, O.W. and Soejarto, D.D. (2003). Traditional herbal drugs of Southern Uganda, II: literature analysis and antimicrobial assays. Journal of Ethnopharmacology 84(1): 57–78.
27. Hartung, W., Schiller, P. and Dietz, K.J. (1998). Physiology of poikilohydric plants. Progress in Botany 59: 299–327.
28. Hay, F., Probert, R., Marro, J. and Dawson, M. (2000). Chapter 15: towards the ex situ conservation of aquatic angiosperms: a review of seed storage behavior. Seeds Biology: Advances and Applications, edition Black, M., Bradford, K.J. and Vázquez-Ramos, J., CAB International Publishing, pp. 161–177.
29. Heilmeier, H., Durka, W., Woitke, M. and Hartung, W. (2005). Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chamaegigas intrepidus. Phytocoenologia 35: 449–468.
30. Hu, W.H., Yang, Y.H., Liaw, S.I. and Chang, C. (2013). Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification. Botanical Studies 54: 33 pp. 1–7.
31. Hughes, Z.E. and Mancera, R.L. (2014). Molecular mechanism of the synergistic effects of vitrification solutions on the stability of phospholipid bilayers. Biophysical Journal 106(12): 2617–2624.
32. Juffe, D. (2010). Nymphaea thermarum. The IUCN Red List of Threatened Species 2010: e.T185459A8415931.
http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T185459A8415931.en.
33. Kaczmarczyk, A., Funnekotter, B., Menon, A., Phang, P.Y., Al-Hanbali, A., Bunn, E. and Mancera, R.L. (2012). Chapter 14: current issues in plant cryopreservation. Current Frontiers in Cryobiology, edition Katkov, I., InTech, pp. 417–438.
34. Kane, M.E., Philman, N.L. and Clayton, D. (1991). A technique for enhanced propagation of viviparous tropical water lilies. Proceedings of the Florida State Horticultural Society 104: 319–322.
35. Kim, H.H., Lee, Y.G., Shin, D.J., Ko, H.C., Gwag, J.G., Cho, E.G. and Engelmann, F. (2009). Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30(5): 320–334.
36. Kun, P.S., Ryong, C.H., Erzsebet, B., Maria, C. and Adrian, Z. (2009). Ornamental species used in water gardens from South Korea. Journal of Plant Development 16: 61–68.
37. Lee, C.H. (2016). Cryopreservation of seeds of blue waterlily (Nymphaea caerulea) using glutathione added plant vitrification solution. Master thesis, National Tsing Hua University.
38. Li, D.Z. and Pritchard, H.W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science 14(11): 614–621.
39. Liao, Y.G. and Yeh, M.M. (2009). The desiccation tolerance and planting of Isoetes kimensis Chang, Kuo & Lai. Natural Conservation Journal 68: 23–27. (in Chinese)
40. Liu, H.Q., Yu, W.G., Dai, J.X., Gong, Q.H., Yang, K.F. and Lu, X.Z. (2004). Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Science 166(1): 97–102.
41. Malmqvist, B. and Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation 29(2): 134–153.
42. Mubbarakh, S.A., Rahmah, S., Rahman, Z.A., Sah, N.N.M. and Subramaniam, S. (2014). Cryopreservation of Brassidium shooting star orchid using the PVS3 method supported with preliminary histological analysis. Applied Biochemistry and Biotechnology 172(2): 1131–1145.
43. Müller, J., Sprenger, N., Bortlik, K., Boller, T. and Wiemken, A. (1997). Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiologia Plantarum 100(1): 153–158.
44. Musselman, L.J. (2001). Georgia Quillworts. Tipularia pp. 2–19 and 40.
45. Nishizawa, S., Sakai, A., Amano, Y. and Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science 91(1): 67–73.
46. Pammenter, N.W. and Berjak, P. (2014). Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. International Journal of Plant Sciences 175(1): 21–28.
47. Petrov, V., Hille, J., Mueller-Roeber, B. and Gechev, T.S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science 6: 69 pp. 1–16.
48. Proctor, M.C.F. and Tuba, Z. (2002). Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327–349.
49. Sakai, A., Hirai, D. and Niino, T. (2008). Chapter 3: development of PVS-based vitrification and encapsulation–vitrification protocols. Plant Cryopreservation: A Practical Guide, edition Reed, B.M., Springer, pp. 33–57.
50. Sakai, A., Kobayashi, S. and Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9(1): 30–33.
51. Schiller, P., Heilmeier, H. and Hartung, W. (1997). Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytologist 136(4): 603–611.
52. Scott, P. (2000). Resurrection plants and the secrets of eternal leaf. Annals of Botany 85: 159–166.
53. Stroud, J.L. and Collins, R.N. (2014). Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis). Sceince of the Total Environment 487: 500–505.
54. Suzuki, M., Tandon, P., Ishikawa, M. and Toyomasu, T. (2008). Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnology Reports 2(2): 123–131.
55. Teixeira, A.S., Faltus, M., Zamecnik, J., Gonzalez-Benito, M.E. and Molina-Garcia, A.D. (2014). Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochimica Acta 593: 4349.
56. Tuba, Z. and Lichtenthaler, H.K. (2011). Chapter 9: Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. Plant Desiccation Tolerance, Ecological Studies 215, edition Lüttge U et al., Springer-Verlag Berlin Heidelberg, pp. 157–182.
57. Turner, S.R., Senaratna, T., Bunn, E., Tan, B., Dixon, K.W. and Touchell, D.H. (2001). Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Annals of Botany 87(3): 371–378.
58. Uragami, A., Sakai, A., Nagai, M. and Takahashi, T. (1989). Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Reports 8(7): 418–421.
59. Volk, G.M. and Walters, C. (2006). Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52(1): 48–61.
60. Walters, C., Berjak, P., Pammenter, N.W., Kennedy, K. and Raven, P. (2013). Preservation of recalcitrant seeds. Science 339(6122): 915–916.
61. Wang, J.C., Chiou, W.L. and Chang, H.M. (2012). A preliminary red list of Taiwanese vascular plants. Endemic Species Research Institute & Taiwan Society of Plant Systematics, Nantou, Taiwan.
62. Wang, Z.C. and Deng, X.X. (2004). Cryopreservation of shoot-tips of Citrus using vitrification: effect of reduced form of glutathione. CryoLetters 25(1): 43–50.
63. Wesley-Smith, J., Berjak, P., Pammenter, N.W. and Walters, C. (2014). Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Annals of Botany 113(4): 695–709.
64. Wesley-Smith, J., Walters, C., Pammenter, N.W. and Berjak, P. (2015). Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Annals of Botany 115(6): 991–1000.
65. Williams, S. (1944). I.—On Isoetes australis S. Williams, a new species from Western Australia. Part I. general morphology. Proceedings of the Royal Society of Edinburgh. Section B. Biology 62: 1–8.
66. Yamamoto, S., Rafique, T., Priyantha, W.S., Fukui, K., Matsumoto, T. and Niino, T. (2011). Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32(3): 256–265.
67. Yin, D.D., Yuan, R.Y., Wu, Q., Li, S.S., Shao, S., Xu, Y.J., Hao, X.H. and Wang, L.S. (2015). Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities. Food Chemistry 187: 20–28.
68. Zhang, D., Ren, L., Chen, G.Q., Zhang, J., Reed, B.M. and Shen, X.H. (2015). ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Reports 34(9): 1499–1513.