研究生: |
李孟娟 Mon-Juan Lee |
---|---|
論文名稱: |
油/水脂質乳化液包覆紫杉醇投藥系統配方暨界面現象之研究 Formulation and Air/Water Interfacial Adsorption Studies of an Oil-in-Water Lipid Emulsion System for Encapsulation of Paclitaxel |
指導教授: |
朱一民
I-Ming Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 油/水脂質乳化液 、紫杉醇 、表面張力 、活性係數 、過剩自由能 、吸附層 、微胞 、臨界微胞濃度 |
外文關鍵詞: | Oil-in-water lipid emulsions, Paclitaxel, Surface tension, Activity coefficient, Excess Gibbs frees energy, Adsorbed film, Micelle, CMC |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用油/水脂質乳化液包覆抗癌藥物紫杉醇(paclitaxel),以tricaprylin (C8:0)為油相,磷脂基膽鹼(egg PC)和非離子型界面活性劑Tween 80為乳化劑,輔以PEG-DSPE 或folate-PEG-DSPE,製備長循環半生期型以及專一標的型油/水脂質乳化液。由於tricaprylin (C8:0)碳鏈較tricaproin (C6:0)長,且毒性較低,故本研究藉由將原配方中之混合油相組成[tricaproin (C6:0): tricaprylin (C8:0) (3:1, w/w)]改為單一油相組成tricaprylin (C8:0),期能發展毒性較低、穩定性與原配方相若之藥物載體。研究結果顯示,兩種不同油相組成之脂質乳化液,液滴粒徑與包覆效率相似;且經過三個月的儲存時間,粒徑皆可維持不變;而除未經PEG-DSPE或folate-PEG-DSPE改質之脂質乳化液外,包覆效率皆可維持二至三個月以上不變。利用黏度計進行之血液實驗結果亦證實兩種不同油相組成之脂質乳化液與血液作用情形相仿。由此可知,單一油相組成脂質乳化液確能取代混合油相組成脂質乳化液,成為較合適之藥物載體。
為更進一步探討油/水脂質乳化液之界面現象,吾人利用表面張力之測量結果,配合Gibbs吸附公式,計算出單一界面活性劑分子於空氣/水界面所佔據之表面積(A2/molecule),並進而估計佔據一乳化液滴表面所需之界面活性劑分子個數。由計算結果發現,乳化液系統中含有過剩之乳化劑,其作用可能與乳化液之穩定性有關。此外,由單分子之表面積與表面張力之關係,可知PEG-DSPE 分子的PEG長鏈是以brush的型態接枝於乳化液液滴表面,形成立體屏障(steric barrier),以增加乳化液之穩定性。
此外,為深入了解egg PC與Tween 80、PEG-DSPE分子在界面上相互作用的情形,吾人亦應用Motomura等人所推導之熱力學公式,求得混合界面活性劑在界面吸附層(adsorbed film)與微胞(micelle)中之過剩自由能(excess Gibbs free energy)。其結果顯示,當總濃度低於臨界微胞濃度(CMC)時,egg PC與Tween 80分子間的作用力小於同分子間作用力,其過剩自由能大於零;而當總濃度增加至臨界微胞濃度, egg PC在界面上的濃度增加,與Tween 80分子形成均勻混合的微胞。至於PEG-DSPE,則由於其與egg PC、Tween 80分子之間的作用力較小,傾向溶於水中;若吸附至界面,亦容易對egg PC/Tween 80之混合單分子層結構造成擾動。故可推測在脂質乳化液液滴的油/水界面上,egg PC與Tween 80可形成排列緊密之單分子層,而PEG-DSPE雖有可能對單分子層之結構造成破壞,卻仍能藉由其PEG長碳鏈之立體障礙,發揮穩定作用。
In this study, paclitaxel, a promising anticancer drug, was entrapped in oil-in-water lipid emulsion droplets with tricaprylin (C8:0) as the oil core, egg phosphatidylcholine (egg PC) and a nonionic surfactant, Tween 80, as the principal emulsifier. The lipid emulsion was modified with polyethylene glycol-distearoyl phosphatidylethanolamine (PEG-DSPE) and folate-polyethylene glycol-distearoyl phosphatidylethanolamine (folate-PEG-DSPE), respectively, to obtain the steric-stabilizing type and specific-targeting type lipid emulsions.
On the basis of a formulation which has been developed in our laboratory, a less cytotoxic lipid emulsion is being sought by substituting the originally more toxic oil core, tricaproin (C6:0): tricaprylin (C8:0) (3:1, w/w), with tricaprylin (C8:0), which is expected to be less cytotoxic because of its longer alkyl chain. The results showed similar particle diameters and paclitaxel encapsulation efficiencies of the two lipid emulsions with different oil contents. After three months of storage, the particle sizes remained unchanged, and the encapsulation efficiencies of paclitaxel, except for that of the conventional-type lipid emulsions, remained in the initial level for at least two months. The effect of blood constituents on the tricaprylin-in-water lipid emulsions is also similar to that on the tricaproin: tricaprylin (3:1, w/w)-in-water lipid emulsions.
In an attempt to investigate the interfacial phenomenon of lipid emulsions, the surface tensions of egg PC, Tween 80, and PEG-DSPE are measured as a function of the concentration. With the application of the Gibbs adsorption equation, the molecular area of an individual surfactant molecule (A2/molecule) at the air/water interface is determined such that the number of molecules necessary to occupy the oil/water interface of a lipid emulsion droplet can be estimated. It was discovered that excess amount of surfactant is present in the lipid emulsion system which may result in micelles or suspension of surfactant molecules in the aqueous media, and is considered to be related to emulsion stabilization.
On the other hand, with the application of the thermodynamic equations derived by Motomura et al., the composition of surfactants in the mixed adsorbed film and mixed micelle can be estimated directly from the results of surface tension measurements such that the interaction between surfactant molecules can be evaluated. The results show that the egg PC and Tween 80 molecules are not miscible with each other in the adsorbed film but form homogeneous mixed micelle when the CMC is reached. As for the PEG-DSPE molecule, it can interfere with the close packing of egg PC and Tween 80 molecules when adsorbs to the air/water interface, or dissolve in the bulk solution when it is rejected by the mixed egg PC/Tween 80 monomolecular film. It is thus inferred that when the oil/water interface of the lipid emulsion droplet is under consideration, a close-packed monomolecular film is produced by egg PC and Tween 80 molecules. Though PEG-DSPE molecules can result in structural perturbation in this mixed egg PC/Tween 80 film, the steric-stabilization of the PEG-chain is expected to compensate for the instability caused by its incorporation.
1. Runowicz, C. D., Wiernik, P. H., Einzig, A. I., Goldberg. G. L., Horwitz, S. B., Taxol in ovarian cancer. Cancer, 71, 1591-1596 (1993).
2. Holmes, F. A., Walters, R. S., Theriault, R. L., Forman, A. D., Newton, L. K., Raber, M. N., Buzdar, A. U., Frye, D. K., Hortobagyi, G. N., Phase II trial of Taxol, an active drug in the treatment of metastatic breast cancer. J. Natl. Cancer Inst., 83, 1797-1805 (1991).
3. Schiff, P. B. and Horwitz, S. B., Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. U. S. A., 77, 1561-1565 (1980).
4. Balasubramanian, S. V., Alderfer, J. L., Straubinger, R. M., Solvent- and concentration-dependent molecular interactions of taxol (paclitaxel). J. Pharm. Sci., 83, 1470-1476 (1994).
5. Mathew, A. E., Mejillano, M. R., Nath, J. P., Himes, R. H., Stella, V. J., Synthesis and evaluation of some water-soluble pro-drugs and derivatives of taxol with antitumor activity. J. Med. Chem., 35, 145-151 (1992).
6. Ringel, I., Horwitz, S. B., Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J. Natl Cancer Inst., 83, 288-291 (1991).
7. Lundberg, B. B., A submicron lipid emulsion coated with amphipathic polyethylene glycol for parenteral administration of paclitaxel (taxol). J. Pharm. Pharmacol., 49, 16-21 (1997).
8. Balasubramanian, S. V., Straubinger, R. M., Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry, 33, 8941-8947 (1994).
9. NCI Investigational Drugs, Pharmaceutical Data, pp. 70-72 (1986) (NIH publication No. 86-2141 revised March 1986).
10. Waugh, W. N., Trissel, L. A., Stella, V. J., Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers. Am. J. Hosp. Practice, 48, 1520-1524 (1991).
11. Liebmann, J. E., Cook, J. A., Lipscholtz, C., Teague, T., Fisher, J., Mitchell, J. B., Cytotoxic studies of paclitaxel (Taxol) in human tumor cell lines. Br. J. Cancer, 68, 1104-1109 (1993).
12. Sharma, A., Straubinger, R. M., Novel taxol formulations: preparation and characterization of taxol-containing liposomes. Pharm. Res., 11, 889-896 (1994).
13. Tarr, B. D., Sambandan, T. G., Yalkowsky, S. H., A new parenteral emulsion for the administration of taxol. Pharm. Res., 4, 162-165 (1987).
14. Alkan-Onyuksel, H., Ramakrishnan, S., Chai, H. B., Pezzuto, J. M., A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm. Res., 11, 206-212 (1994).
15. Becher, P., "Emulsions: Theory and Practice". Reinhold, New York (1965).
16. Davis, S. S., Sternson, L., Washington, C., Liversidge, G., West, P., Kirsh, R. and Illum, L., Lipid emulsions as drug delivery systems. Ann. N. Y. Acad. Sci., 507, 75-88 (1987).
17. Repta, A. J., Formulation of investigational anticancer drugs. In "Topics in Pharmaceutical Sciences" (D. D. Breimer and P. Speiser, Eds.), p. 131-151. Elsevier, Amsterdam, 1981.
18. Glen, J. B. and Hunter, S. C., Pharmacology of an emulsion formulation of ICI 35868. Br. J. Anaesth., 56, 617-625 (1984).
19. Allen, T. M., Hansen, C., Martin, F., Redemann, C., Yau-Young, A., Liposomes containing synthetic lipid derivatives of polyethylene glycol show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta, 1066, 29-36 (1991).
20. Mayhew, E. G., Lasic, D., Babbar, S. and Martin, F. J., Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int. J. Cancer, 51, 302-309 (1992).
21. Allen, T. M. and Chonn, A., Large unilamellar liposome with low uptake into the reticuloendothelial system. FEBS Lett., 223, 42-46 (1987).
22. Lundberg, B. B., Mortimer, B. C. and Redgrave, T. G., Submicron lipid emulsions containing amphipathic polyethylene glycol for use as drug-carrier with prolonged circulation time. Int. J. Pharm., 134, 119-237 (1996).
23. Du, H., Chandaroy, P. and Hui, S. W., Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim. Biophys. Acta, 1326, 236-248 (1997).
24. Coney, L. R., Tomassetti, A., Carayannopoulos, L., Frasca, V., Kamen, B. A., Colnaghi, M. I. and Zurawski, V. R., Jr., Cloning of a tumor-associated antigen-Mov18 and Mov19 antibodies recognize a folate-binding protein. Cancer Res., 51, 6125-6132 (1991).
25. Garin-Chesa, P., Campbell, I., Saigo, P. E., Lewis, J. L., Jr., Old, L. J. and Rettig, W. J., Trophoblast and ovarian-cancer antigen-Lk26- sensitivity and specificity in immunopathology and molecular-identification as a folate-binding protein. Am. J. Pathol., 142, 557-567 (1993).
26. Campell, I. G., Jones, T. A., Foulkes, W. D. and Trowsdale, J., Folate-binding protein is a marker for ovarian-cancer. Cancer Res., 51, 5329-5338 (1991).
27. Wang, S. and Low, P. S., Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release, 53, 39-48 (1998).
28. Kane, M. A., Elwood, P. C., Portillo, R. M., Antony, A. C. and Kolhouse, J. F., The interrelationship of the soluble and membrane-associated folate-binding proteins in human KB cells. J. Biol. Chem., 261, 5625-5631 (1986).
29. Lee, R. J. and Low, P. S., Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem., 269, 3198-3204 (1994).
30. Lee, R. J. and Low, P. S., Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta, 1233, 134-144 (1995).
31. Wang, S., Lee, R. J., Cauchon, G., Gorenstein, D. G. and Low, P. S., Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth-factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene-glycol. Proc. Natl. Acad. Sci. U. S. A., 92, 3318-3322 (1995).
32. 王姿容,O/W 脂質乳化液劑型包覆紫杉醇投藥系統之研究。國立清華大學化學工程研究所碩士論文 (1999)。
33. Washington, C., Stability of lipid emulsions for drug delivery. Adv. Drug Delivery Rev., 20, 131-145 (1996).
34. Shaw, D. J., "Introduction to Colloid and Surface Chemistry". Butterworths, London, 1980.
35. Napper, D. H., "Polymeric Stabilization of Colloidal Dispersions". Academic Press, London, 1983.
36. Cevc, G. and Marsh, D., "Phospholipid Bilayers, Physical Principles and Models". J. Wiley, New York, 1984.
37. Washington, C., Chawla, A., Christy, N. and Davis, S. S., The electrokinetic properties of phospholipid-stabilized fat emulsions. Int. J. Pharm., 54, 191-197 (1989).
38. Washington, C., The electrokinetic properties of phospholipid-stabilized fat emulsions. 2. Droplet mobility in mixed electrolytes. Int. J. Pharm., 58, 13-17 (1990).
39. Rubino, J. T., The influence of charged lipids on the flocculation and coalescence of oil-in-water emulsions. 1. Kinetic assessment of emulsion stability. J. Parenteral Sci. Technol., 44, 210-215 (1990).
40. Singleton, W. S. and Brown, M. L., Effect of saline electrolyte on particle sizes in fat emulsions by electronic counting. J. Am. Oil. Chem. Soc., 42, 312-314 (1965).
41. Muller, R. H. and Heinemann, S., Fat emulsions for parenteral nutrition. IV. Lipofundin MCT/LCT regimens for total parenteral nutrition (TPN) with high electrolyte load. Int. J. Pharm., 107, 121-132 (1994).
42. Chaturvedi, P. R., Patel, N. M., and Lodhi, S. A., Effect of terminal heat sterilization on the stability of phospholipids-stabilized submicron emulsions. Acta. Pharm. Nord., 4, 51-55 (1992).
43. Benita, S. and Levy, M. Y., Design and characterization of a submicronized o/w emulsion of diazepam for parenteral use. Int. J. Pharm., 54, 103-112 (1989).
44. Yamaguchi, T., Nishizaki, K., Itai, S., Hayashi, H., and Ohashima, H., Physicochemical characterization of parenteral lipid emulsion: influence of cosurfactants on flocculation and coalescence. Pharm. Res., 12, 1273-1278 (1995).
45. Lundberg, B. B., Preparation of drug-carrier emulsions stabilized with phosphatidylcholine-surfactant mixtures. J. Pharm. Sci., 83, 72-75 (1994).
46. Weingarten, C., Santos Magalhaes, N. S., Baszkin, A., Benita, S., and Seiler, M., Interaction of a non-ionic ABA copolymer surfactant with phospholipid monolayers: Possible relevance to emulsion stabilization. Int. J. Pharm., 75, 171-179 (1991).
47. Jumaa, M. and Muller, B. W., Influence of the non-ionic surfactant PEG-660-12-hydroxy stearate on the surface properties of phospholipid monolayers and their effect on lipid emulsion stability. Colloid Polym. Sci., 277, 347-353 (1999).
48. Kabalnov, A., Weers, J., Arlauskas, R. and Tarara, T., Phospholipids as emulsion stabilizers. 1. Interfacial tensions. Langmuir, 11, 2966-2974 (1995).
49. Hutchinson, E., Mixed monolayers. I. Adsorbed films at air-water surfaces. J. Colloid Sci., 3, 413-424 (1948).
50. Ingram, B. T. and Luckhurt, A. H. W., in "Surface active agents", S. C. I. Symposium Proceedings, p. 89-98, London, 1979.
51. Ingram, B. T., Surface tensions of non-ideal surfactant mixtures. Colloid Polym. Sci., 258, 191-193 (1980).
52. Rosen, M. J. and Hua, X. Y., Surface concentrations and molecular interactions in binary mixtures of surfactants. J. Colloid Interface Sci., 86, 164-172 (1982).
53. Rubingh, D. N., in "Solution Chemistry of Surfactants I" (K. L. Mittal, Ed.), p. 337, Plenum Press, New York, 1979.
54. Shinoda, K. and Nomura, T., Miscibility of fluorocarbon and hydrocarbon surfactants in micelles and liquid-mixtures-Basic studies of oil repellent and fire extinguishing agents. J. Phys. Chem., 84, 365-369 (1980).
55. Hua, X. Y. and Rosen, M. J., Synergism in binary mixtures of surfactants. I. Theoretical analysis. J. Colloid Interface Sci., 90, 212-219 (1982).
56. Lucassen-Reynders, E. H., J. Colloid Interface Sci., 85, 178 (1983).
57. Uryu, S., Aratono, M., Yamanaka, M., Motomura, K., and Matuura, R., Adsorption of dodecyltrimethylammonium chloride-decylammonium chloride mixtures at water-air interface. Bull. Chem. Soc. Jpn., 56, 3219-3223 (1983).
58. Uryu, S., Aratono, M., Yamanaka, M., Motomura, K., and Matuura, R., Mixed adsorbed film of 2-(octylsulfinyl)ethanol with decylammonium chloride at water-air interface. Bull. Chem. Soc. Jpn., 57, 967-971 (1984).
59. Motomura, K., Iwanaga, S., Yamanaka, M., Aratono, M., and Matuura, R., Thermodynamic studies on adsorption at interfaces. 5. Adsorption from micellar solution. J. Colloid Interface Sci., 86, 151-157 (1982).
60. Yamanaka, M., Iyota, H., Aratono, M., Motomura, K., and Matuura, R., Effect of pressure on the adsorption of dodecylammonium chloride at the aqueous micellar solution-hexane interface. J. Colloid Interface Sci., 94, 451-455 (1983).
61. Motomura, K., Iwanaga, S., Uryu, S., Matsukiyo, H., Yamanaka, M., and Matuura, R., Thermodynamic study of the adsorption of octylsulfinylethanol at the micellar solution-air interface. Colloids Surfaces, 9, 19-31 (1984).
62. Yamanaka, M., Aratono, M., Motomura, K., and Matuura, R., Effect of Pressure on the adsorption and micelle formation of aqueous dodecyltrimethylammonium chloride solution-hexane system. Colloid Polym. Sci., 262, 338-341 (1984).
63. Motomura, K., Kajiwara, I., Ikeda, N., and Aratono, M., Thermodynamic study of the adsorption of sodium perfluorooctanoate at the water-hexane interface. Colloids Surfaces, 38, 61-69 (1989).
64. Yamanaka, M., Aratono, M., Hayami, Y., and Motomura, K., Effect of coexistent hydrocarbon phase on the volume behavior of adsorbed film and micelle of dodecyltrimethylammonium chloride. Colloid Polym. Sci., 268, 70-75 (1990).
65. Motomura, K., Matsukiyo, H., and Aratono, M., in "Phenomena in Mixed Surfactant Systems" (J. F. Scamehorn, Ed.), ACS Symposium 311, p. 163. American Chemical Society, Washington, D. C., 1986.
66. Aratono, M., Kanda, T., and Motomura, K., Study on the adsorption and the micelle formation of a (decylsulfinyl)ethanol and (octylsulfinyl)ethanol mixture. Langmuir, 6, 843-846 (1990).
67. Matsuki, H., Kanda, T., Aratono, M., and Motomura, K., Miscibility of 1-octanol and 2-(octylsulfinyl)ethanol in the adsorbed film and micelle. Bull. Chem. Soc. Jpn., 63, 2159-2163 (1990).
68. Motomura, K., Ando, N., Matsuki, H., and Aratono, M., Thermodynamic studies on adsorption at interfaces. 7. Adsorption and micelle formation of binary surfactant mixtures. J. Colloid Interface Sci., 139, 188-197 (1990).
69. Motomura, K., Thermodynamic studies on adsorption at interfaces. I. General formulation. J. Colloid Interface Sci., 64, 348-355 (1978).
70. Motomura, K. and Aratono, M., Geometric formalism of the thermodynamics of adsorption at interfaces between 2 fluid phases. Langmuir, 3, 304-306 (1987).
71. Motomura, K., Yano, T., Ikematsu, M., Matuo, H., and Matuura, R., Azeotropic transformation in mixed monolayers of ethyl heptadecanoate and tetradecanoic acid. J. Colloid Interface Sci., 69, 209-216 (1979).
72. Holland, P. M., in "Phenomena in Mixed Surfactant Systems" (J. F. Scamehorn, Ed.), ACS Symposium 311, p. 102. American Chemical Society, Washington, D. C., 1986.
73. Rowlinson, J. S. and Swinton, F. L., in "Liquids and Liquid Mixtures", 3rd ed., p. 132. Butterworth, London, 1982.
74. Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N., and Iyota, H., Thermodynamic consideration of mixtures of surfactants in adsorbed films and micelles. J. Colloid Interface Sci., 200, 161-171 (1998).
1. 宮柔燕,O/W 型乳化液包覆紫杉醇投藥系統穩定性之探討。國立清華大學化學工程研究所碩士論文 (1998)。
76. 陳志賓,O/W 型乳化液包覆紫杉醇投藥系統製備之研究。國立清華大學化學工程研究所碩士論文 (1998)。
77. Rosse, W. F., The spleen as a filter. New Eng. J. Med., 317, 704-706 (1987).
78. Wisse, E., J. Ultrastruct. Res., 31, 125-150 (1970).
79. Liu, D., Mori, A., and Huang, L., Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta, 1104, 95-101 (1992).
80. Ahmad, K., Ho, C. C., Fong, W. K. and Toji, D., Properties of palm oil-in-water emulsions stabilized by nonionic emulsifiers. J. Colloid Interface Sci., 181, 595-604 (1996).
81. Opawale, F. O. and Burgess, D. J., Influence of interfacial properties of lipophilic surfactants on water-in-oil emulsion stability. J. Colloid Interface Sci., 197, 142-150 (1998).
82. Krawczyk, M. A., Wasan, D. T. and Shetty, C. S., Chemical demulsification of petroleum emulsions using oil-soluble demulsifiers. Ind. Eng. Chem. Res., 30, 367-375 (1991).
83. Baekmark, T. R., Elender, G., Lasic, D. D., and Sackmann, E., Conformational transitions of mixed monolayers of phospholipids and poly(ethylene oxide) lipopolymers and interaction forces with solid surfaces. Langmuir, 11, 3975-3987 (1995).
84. Tirosh, O., Barenholz, Y., Katzhendler, J., and Priev, A., Hydration of polyethylene glycol-grafted liposomes. Biophys. J., 74, 1371-1379 (1998).
85. Woodle, M. C. and Lasic, D. D., Sterically stabilized liposomes. Biochim. Biophys. Acta, 1113, 171-199 (1992).
86. Kenworthy, A. K., Simon, S. A., and McIntosh, T. J., Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J., 68, 1903-1920 (1995).
87. Kenworthy, A. K., Hristova, K., Needham, D., and McIntosh, T. J., Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached polyethylene glycol. Biophys. J., 68, 1921-1936 (1995).
88. Needham, D., McIntosh, T. J., and Lasic, D., Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim. Biophys. Acta, 1108, 40-48 (1992).
89. Baekmark, T. R., Pedersen, S., Jorgensen, K., and Mouritsen, O. G., The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine. Biophys. J., 73, 1479-1491 (1997).
90. Todoroki, N., Tanaka, F., Ikeda, N., Aratono, M., and Motomura, K., Miscibility of octyldimethylphosphine oxide and decyldimethylphosphine oxide in the adsorbed film and micelle. Bull. Chem. Soc. Jpn., 66 , 351-356 (1993).
91. Motomura, K. and Aratono, M., in "Mixed Surfactant Systems" (K. Ogino and M. Abe, Eds.), p. 99. Dekker, New York, 1993.