簡易檢索 / 詳目顯示

研究生: 許瑞文
Hsu, Ray Wen
論文名稱: 製備多孔芳香胺高分子應用於水中金屬離子移除
Preparation of Porous Functional Heterocyclic Polymerized Aromatic Amines for Removal of Aqueous Metals from Wastewater
指導教授: 王本誠
Wang, Pen Cheng
口試委員: 林滄浪
Lin, Tsang-Lang
陳燦耀
Chen, Tsan-Yao
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 芳香胺高分子表面積胺基亞胺基
外文關鍵詞: Polymerized aromatic amines, Surface area, Amines, Imines
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業的發展與演進,水污染已成為人類社會面臨的嚴重威脅。而重金屬是水污染的主要污染物之一,因此如何處理好重金屬廢水已成為當前亟待解決的
    工作。因此,開發成本低、處理效果好的吸附劑為處理重金屬廢水的一大方向。
      本研究主要分為兩大部分:第一部分探討芳香胺高分子微結構的生長機制,透過控制微結構的生長改變其表面積大小,增加吸附劑的吸附量,其中主要是起始劑的添加、氧化劑的選擇及濃度的改變,來提升多孔芳香胺的表面積,起使劑的添加會誘發聚合物產生自由基,改變微結構的生長,而不同的氧化劑對於聚合速度有顯著的影響,亦會使其微結構產生變化,並搭配微波合成,探討如何藉由外力影響自由基的生成進而影響芳香胺高分子的生成,最後,透過濃度的調整及界面反應,改變其質傳的速度,進而影響其聚合的效果,探討局部濃度過高對其影響,有利其後續的應用,而第二部分將芳香胺高分子應用於吸附水中金屬離子,改善以聚苯胺為材料的吸附劑效能,因芳香胺高分子富含胺基及亞胺基,
    能達到提高金屬吸附率之目標。

    關鍵字:芳香胺高分子、表面積、胺基及亞胺基


    Huge metals are discharged into the environment for their wide applications in semiconductor, panel, textile dyeing, printing inks, wood preservation, paints, etc. resulting in environmental pollution. Usually, metals exist in metal ions forms in aqueous environment. Therefore, the strategy based on metal ions reduction and consequently precipitation was often used for metal ions removal.
    In this work, the applicability of polymerized aromatic amines for the removal of copper and palladium from various water samples has been investigated. Besides, the effect of mass transfer, concentrations of reactants and the addition of the initiator on the morphology of polymerized aromatic amines was studied. With using different aniline analogues as the monomers, we could tune the nitrogen/carbon composition. In the meantime, we can get a high capacity adsorbent for metals by increasing the amount of amines, imines and surface area.

    Key words: polymerized aromatic amines、surface area、amines and imines

    目錄 中文摘要…………………………………………………………………………….…………………………. i 英文摘要……………………………………………………………………………………………..………. ii 誌謝………………………………………………………………………………………………….…………. iii 目錄…………………………………………………………………………………………………….….…… iv 圖目錄…………………………………………………………………………………………………………viii 表目錄…………………………………………………………………………………………………………xii 一、 緒論 1 1-1背景 1 1-2研究目的 3 二、 文獻回顧 5 2-1多孔芳香胺高分子 5 2-1-1聚苯胺 5 2-1-1-1化學方法合成聚苯胺 7 2-1-1-2電化學方法合成聚苯胺 7 2-1-2芳香胺高分子 7 2-1-3 多孔高分子之製備 8 2-1-3-1添加劑 8 2-1-3-2氧化劑 9 2-1-3-3 濃度 10 2-2 水中金屬處理 11 2-2-1 水中金屬處理之方法 11 2-2-1-1還原沉降法 11 2-2-1-2離子交換樹脂法 11 2-2-1-3電化學還原法 11 2-2-1-4金屬吸附劑 12 2-2-2水中銅離子之移除 13 2-2-3水中鈀離子之移除 14 三、 實驗內容 16 3-1實驗使用藥品 16 3-2實驗流程 17 3-3雜環高分子材料製備 18 3-4以芳香胺高分子為吸附劑吸附水中金屬 20 四、 儀器設備 21 4-1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 21 4-2比表面積分析儀(Surface Area and Porosimetry Analyser) 23 4-3光譜分析 26 4-3-1紫外光-可見光-近紅外光光譜儀(UV-VIS-NIR Spectrometer) 26 4-3-2傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 27 4-3-3共軛聚焦顯微拉曼光譜儀(Confocal Micro-Raman Spectrometer) 28 4-4元素分析儀(Elemental Analyzer) 29 4-5 X射線光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 30 4-6熱分析儀(THERMAL ANALYZERS, TGA) 32 4-7感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 33 五、 實驗結果與討論 35 5-1 雜環聚合物之特性分析 35 5-1-1掃描式電子顯微鏡 35 5-1-1-1添加劑濃度之變化 35 5-1-1-2氧化劑的氧化還原能力強弱 36 5-1-1-3單體比例之變化 36 5-1-1-4 微波合成之芳香胺高分子 36 5-1-1-5 界面反應之芳香胺高分子 37 5-1-2比表面積分析儀(Surface Area and Porosimetry Analyser) 47 5-1-2-1添加劑濃度之變化 47 5-1-2-2氧化劑的氧化還原能力強弱 47 5-1-2-3單體比例之變化 51 5-1-2-4 微波合成之芳香胺高分子 51 5-1-3元素分析 54 5-1-3-1元素分析儀 54 5-1-3 X射線光電子能譜儀 55 5-1-5傅立葉轉換紅外光光譜儀 60 5-1-6紫外光-可見光-近紅外光光譜儀 61 5-1-7熱分析儀 64 5-2水中金屬離子吸附之分析 65 5-2-1感應耦合電漿質譜分析儀 65 5-2-1-1吸附水中銅離子 65 5-2-1-2吸附水中鈀離子 66 六、 結論 69 七、 未來工作 71 八、 參考文獻 72 圖目錄 圖 1聚苯胺的氧化還原型態 6 圖 2聚苯胺不同氧化程度的UV光譜 6 圖 3苯胺與其衍生物 8 圖 4聚苯胺與重金屬離子反應的機制 9 圖 5聚苯胺之微結構 9 圖 6利用弱氧化劑合成聚苯胺之電子顯微鏡圖 10 圖 7利用不同濃度合成聚苯胺之電子顯微鏡圖 10 圖 8聚苯胺與重金屬離子反應的機制 12 圖 9鈀離子經由聚苯胺處理隨時間變化之濃度 13 圖 10實驗流程圖 17 圖 11 HITACHI SU-8010 冷場發射掃瞄式電子顯微鏡 22 圖 12Quantachrome Instruments AUTOSORB-1 比表面積分析儀 25 圖 13Jasco V-670 紫外光-可見光-近紅外光光譜儀 26 圖 14Jasco FT-IR 4200傅立葉轉換紅外光光譜儀 27 圖 15Horiba Jobin Yvon LABRAM HR 800共軛聚焦顯微拉曼光譜儀 28 圖 16Thermo Flash 2000 元素分析儀 29 圖 17ULVAC-PHI AES-650 X射線光電子能譜儀 31 圖18Mettler-Toledo 2-HT熱分析儀 32 圖 19感應耦合電漿質譜儀構造圖 34 圖 20Agilent 7500ce 感應耦合電漿質譜分析儀 34 圖 21 聚2-氨基吡啶 38 圖 22聚2-氨基吡啶,添加劑濃度為0.01M 38 圖 23聚2-氨基吡啶,添加劑濃度為0.03M 38 圖 24聚2-氨基吡啶,添加劑濃度為0.05M 38 圖 25聚2-氨基嘧啶 39 圖 26聚2-氨基嘧啶,添加劑濃度為0.01M 39 圖 27聚2-氨基嘧啶,添加劑濃度為0.03M 39 圖 28聚2-氨基嘧啶,添加劑濃度為0.05M 39 圖 29聚3-胺基-1,2,4-三嗪 40 圖 30聚3-胺基-1,2,4-三嗪,添加劑濃度為0.01M 40 圖 31聚3-胺基-1,2,4-三嗪,添加劑濃度為0.03M 40 圖 32聚3-胺基-1,2,4-三嗪,添加劑濃度為0.05M 40 圖 33以雙氧水為氧化劑之聚苯胺 41 圖 34苯胺:2-氨基吡啶之比例為4:1之共聚物 42 圖 35苯胺:2-氨基吡啶之比例為1:1之共聚物 42 圖 36苯胺:2-氨基吡啶之比例為1:4之共聚物 42 圖 37苯胺:2-氨基嘧啶之比例為4:1之共聚物 43 圖 38苯胺:2-氨基嘧啶之比例為1:1之共聚物 43 圖 39苯胺:2-氨基嘧啶之比例為1:4之共聚物 43 圖 40苯胺: 3-胺基-1,2,4-三嗪之比例為4:1之共聚物 44 圖 41苯胺: 3-胺基-1,2,4-三嗪之比例為1:1之共聚物 44 圖 42苯胺: 3-胺基-1,2,4-三嗪之比例為1:4之共聚物 44 圖 43使用微波合成之聚苯胺 45 圖 44使用介面反應合成聚苯胺經過不同時間之外觀 46 圖 45使用界面合成之聚苯胺 46 圖 46添加劑濃度為0.01M之聚2-氨基吡啶 49 圖 47添加劑濃度為0.03M之聚2-氨基吡啶 49 圖 48添加劑濃度為0.05M之聚2-氨基吡啶 49 圖 49添加劑濃度為0.1M之聚2-氨基吡啶 49 圖 50不同氧化劑合成之聚苯胺 50 圖 51苯胺:2-氨基吡啶之比例為4:1之共聚物 52 圖 52苯胺:2-氨基吡啶之比例為1:1之共聚物 52 圖 53苯胺:2-氨基吡啶之比例為1:4之共聚物 52 圖 54微波合成之聚苯胺 53 圖 55苯胺、2-氨基吡啶、2-氨基嘧啶及3-胺基-1,2,4-三嗪 54 圖 56聚苯胺之XPS 56 圖 57聚2-氨基吡啶之XPS 56 圖 58聚2-氨基嘧啶之XPS 57 圖 59聚3-胺基-1,2,4-三嗪之XPS 57 圖 60聚2-氨基吡啶之拉曼圖譜 59 圖 61聚2-氨基嘧啶之拉曼圖譜 59 圖 62聚3-胺基-1,2,4-三嗪之拉曼圖譜 59 圖 63聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪 60 圖 64聚苯胺於不同氧化程度之紫外光-可見光-近紅外光光譜 62 圖 65圖聚苯胺之紫外光-可見光-近紅外光光譜 62 圖 66聚2-氨基吡啶之紫外光-可見光-近紅外光光譜 63 圖 67聚2-氨基嘧啶之紫外光-可見光-近紅外光光譜 63 圖 68聚3-胺基-1,2,4-三嗪之紫外光-可見光-近紅外光光譜 63 圖 69聚苯胺於氮氣及大氣環境下之熱分析圖譜 64 圖 70聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪 64 圖 71聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪 66 圖 72聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪 67 表目錄 表 1水中銅、鎳、鎘、鉻金屬離子經聚苯胺及其他吸附劑處理比較 13 表 2本實驗所使用之藥品 16 表 3單體、氧化劑及起始劑之濃度比 19 表 4聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪之元素分析 55 表 5聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪之XPS元素分析 55 表 6聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪對於銅離子移除之能力比較 65 表 7銅離子於不同pH值之型態與比例 66 表 8聚苯胺、聚2-氨基吡啶、聚2-氨基嘧啶及聚3-胺基-1,2,4-三嗪對於鈀離子移除之能力比較 67 表 9鈀離子於不同pH值之型態與比例 68

    1 Daraei, P., Madaeni, S.S., Ghaemi, N., Salehi, E., Khadivi, M.A., Moradian, R., and Astinchap, B.: ‘Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water’, Journal of Membrane Science, 2012, 415-416, pp. 250-259
    2 Liu, D., and Sun, D.: ‘Modeling Adsorption of Cu(II) Using Polyaniline-Coated Sawdust in a Fixed-Bed Column’, Environmental Engineering Science, 2012, 29, (6), pp. 461-465
    3 Huang, Y., Li, J., Chen, X., and Wang, X.: ‘Applications of conjugated polymer based composites in wastewater purification’, RSC Adv., 2014, 4, (107), pp. 62160-62178
    4 Wang, H., Ding, J., Lee, B., Wang, X., and Lin, T.: ‘Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution’, Journal of Membrane Science, 2007, 303, (1-2), pp. 119-125
    5 Krishna, M.V., Ranjit, M., Chandrasekaran, K., Venkateswarlu, G., and Karunasagar, D.: ‘On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences’, Talanta, 2009, 79, (5), pp. 1454-1463
    6 DAN LI, J.H., RICHARD B. KANER: ‘Polyaniline Nanofibers: A Unique Polymer
    Nanostructure for Versatile Applications’, ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42, (1), pp. 135-145
    7 Sapurina, I., and Stejskal, J.: ‘The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures’, Polymer International, 2008, 57, (12), pp. 1295-1325
    8 Wang, P.-C., Dan, Y., and Liu, L.-H.: ‘Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped polyaniline nanofibers’, Materials Chemistry and Physics, 2014, 144, (1-2), pp. 155-161
    9 Sapurina, I.Y., and Shishov, M.A.: ‘Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures’, 2012
    10 Zhiming Zhang, Zhixiang Wei, and Meixiang Wan: ‘Nanostructures of Polyaniline Doped with Inorganic Acids’, 2002
    11 S. G. Pawar, S. L. Patil, M. A. Chougule, B. T. Raut, D. M. Jundale and V. B. Patil: ‘Polyaniline:TiO2 Nanocomposites: Synthesis and Characterization’, 2010,2 (2), pp.194-201
    12 J.E. Albuquerque, L.H.C. Mattoso, D.T. Balogh, R.M. Faria, J.G. Masters,
    A.G. MacDiarmid: ‘A simple method to estimate the oxidation state of polyanilines’, Synthetic Metals, 2000, 113,pp. 19–22
    13 Li, X.-G., Huang, M.-R., Duan, W., and Yang, Y.-L.: ‘Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations’, Chemical Reviews, 2002, 102, (9), pp. 2925-3030
    14 Riaz, U., Ahmad, S., and Ashraf, S.M.: ‘Influence of polymerization conditions on the template free synthesis of nanoparticles of poly (1-naphthylamine)’, Polym. Bull., 2008, 60, (4), pp. 487-493
    15 Thinh, P.X., Kim, J.K., and Huh, D.S.: ‘Fabrication of honeycomb-patterned polyaniline composite films using chemically modified polyaniline nanoparticles’, Polymer, 2014, 55, (20), pp. 5168-5177
    16 Yan, B., Yang, J., and Cao, Y.: ‘Electrochemical behaviour of polypyridazine and o-, m-, p-diazines’, Synthetic Metals, 1988, 26, (1), pp. 9-20
    17 Koketsu, J., Kato, K., Ando, F., and Fujimura, Y.: ‘Electrochemical polymerization of 3-aminopyridine and some characteristics’, Synthetic Metals, 1993, 60, (1), pp. 45-49
    18 Li, X.-G., Huang, M.-R., Li, F., Cai, W.-J., Jin, Z., and Yang, Y.-L.: ‘Oxidative copolymerization of 2-pyridylamine and aniline’, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, (24), pp. 4407-4418
    19 Stević, M.C., Ćirić-Marjanović, G., Marjanović, B., Ignjatović, L.M., and Manojlović, D.: ‘The Electrochemical Oxidation of 6-Aminoquinoline: Computational and Voltammetric Study’, Journal of The Electrochemical Society, 2012, 159, (11), pp. G151-G159
    20 El-Ghaffar, M.A.A., Mohamed, N.A., Ghoneim, A.A., and Shaffei, K.A.: ‘Characterization and Electrical Properties of Some Hydrochloric Acid-Doped Aniline and 2-Amino-Pyridine Homopolymers and Copolymers’, Polymer-Plastics Technology and Engineering, 2006, 45, (12), pp. 1327-1338
    21 Wazzan, A.A., Ismail, M.N., and Abd El Ghaffar, M.A.: ‘Evaluation of Some Polyaromatic Amines as Antirads and Antifatigue Agents in SBR Vulcanizates’, International Journal of Polymer Analysis and Characterization, 2005, 10, (1-2), pp. 57-69
    22 Patil, D., Patil, P., Seo, Y.-K., and Hwang, Y.K.: ‘Poly(o-anisidine)–tin oxide nanocomposite: Synthesis, characterization and application to humidity sensing’, Sensors and Actuators B: Chemical, 2010, 148, (1), pp. 41-48
    23 Wang, P.-C., Venancio, E.C., Sarno, D.M., and MacDiarmid, A.G.: ‘Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media’, Reactive and Functional Polymers, 2009, 69, (4), pp. 217-223
    24 Sadek, A.Z., Wlodarski, W., Kalantar-Zadeh, K., Baker, C., and Kaner, R.B.: ‘Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors’, Sensors and Actuators A: Physical, 2007, 139, (1-2), pp. 53-57
    25 Venancio, E.C., Wang, P.-C., and MacDiarmid, A.G.: ‘The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline’, Synthetic Metals, 2006, 156, (5-6), pp. 357-369
    26 Shinde, V.P., and Patil, P.P.: ‘Investigation on role of monomer(s) during electrochemical polymerization of aniline and its derivatives on low carbon steel by XPS’, Electrochimica Acta, 2012, 78, pp. 483-494
    27 Zujovic, Z.D., Wang, Y., Bowmaker, G.A., and Kaner, R.B.: ‘Structure of Ultralong Polyaniline Nanofibers Using Initiators’, Macromolecules, 2011, 44, (8), pp. 2735-2742
    28 Li, G., Zhang, C., Li, Y., Peng, H., and Chen, K.: ‘Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers’, Polymer, 2010, 51, (9), pp. 1934-1939
    29 Guo, X., Fei, G.T., Su, H., and De Zhang, L.: ‘High-Performance and Reproducible Polyaniline Nanowire/Tubes for Removal of Cr(VI) in Aqueous Solution’, The Journal of Physical Chemistry C, 2011, 115, (5), pp. 1608-1613
    30 Zeng, F., Qin, Z., Liang, B., Li, T., Liu, N., and Zhu, M.: ‘Polyaniline nanostructures tuning with oxidants in interfacial polymerization system’, Progress in Natural Science: Materials International, 2015, 25, (5), pp. 512-519
    31 Deka, M., Nath, A.K., and Kumar, A.: ‘Effect of dedoped (insulating) polyaniline nanofibers on the ionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene) based composite polymer electrolyte membranes’, Journal of Membrane Science, 2009, 327, (1-2), pp. 188-194
    32 Nand, A.V., Ray, S., Easteal, A.J., Waterhouse, G.I.N., Gizdavic-Nikolaidis, M., Cooney, R.P., Travas-Sejdic, J., and Kilmartin, P.A.: ‘Factors affecting the radical scavenging activity of polyaniline’, Synthetic Metals, 2011, 161, (13-14), pp. 1232-1237
    33 Yang, W., Gao, Z., Song, N., Zhang, Y., Yang, Y., and Wang, J.: ‘Synthesis of hollow polyaniline nano-capsules and their supercapacitor application’, Journal of Power Sources, 2014, 272, pp. 915-921
    34 Bhaumik, M., Maity, A., Srinivasu, V.V., and Onyango, M.S.: ‘Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers’, Chemical Engineering Journal, 2012, 181-182, pp. 323-333
    35 Kumar, P.A., Chakraborty, S., and Ray, M.: ‘Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber’, Chemical Engineering Journal, 2008, 141, (1-3), pp. 130-140
    36 Kumar, P.A., and Chakraborty, S.: ‘Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber’, Journal of hazardous materials, 2009, 162, (2-3), pp. 1086-1098
    37 Wang, J., Deng, B., Chen, H., Wang, X., and Zheng, J.: ‘Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms’, Environmental Science & Technology, 2009, 43, (14), pp. 5223-5228
    38 Kong, Y., Wei, J., Wang, Z., Sun, T., Yao, C., and Chen, Z.: ‘Heavy metals removal from solution by polyaniline/palygorskite composite’, Journal of Applied Polymer Science, 2011, 122, (3), pp. 2054-2059
    39 Dinda, D., and Kumar Saha, S.: ‘Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)’, Journal of hazardous materials, 2015, 291, pp. 93-101
    40 Shang, M., Sun, S.-Z., Dai, H.-X., and Yu, J.-Q.: ‘Cu(II)-Mediated C–H Amidation and Amination of Arenes: Exceptional Compatibility with Heterocycles’, Journal of the American Chemical Society, 2014, 136, (9), pp. 3354-3357
    41 Wei, X.-L.: ‘XPS Study of Highly Sulfonated Polyaniline’, Macromolecules 1999, pp. 3114-3117
    42 Ismail, R.A.W.: ‘Preparation and Characterization of PAni Films by Electrochemical Polymerization’, IJAP, 2014, 10, (2), pp. 23-26
    43 Xing-Rong Zeng: ‘Structures and properties of chemically reduced polyanilines’, Polymer, 1998, 39, (5), pp. 1187-1195
    44 Lindfors, T., and Ivaska, A.: ‘Raman based pH measurements with polyaniline’, Journal of Electroanalytical Chemistry, 2005, 580, (2), pp. 320-329
    45 M. Deka, A.K. Nath, A. Kumar: ‘Effect of dedoped (insulating) polyaniline nanofibers on the ionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene) based composite polymer electrolyte membranes’, Journal of Membrane Science, 2009, 327, pp. 188–194
    46 Jose, S.P., and Mohan, S.: ‘Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline’, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2006, 64, (1), pp. 240-245
    47 Lili Ding, Xingwu Wang and R.V. Gregory: ‘Thermal properties of chemically synthesized polyaniline EB powder’, Synthetic Metals, 1999, 104, pp.73-78’

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE