簡易檢索 / 詳目顯示

研究生: 馮永正
Yung-Cheng Feng
論文名稱: 隨機振動測試之振動機控制器的研製
The Development of a Shaker Controller for Random Vibration Testing
指導教授: 鐘太郎
Tai-Lang Jong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 90
中文關鍵詞: 振動機隨機振動測試系統鑑別H∞振動測試系統
外文關鍵詞: shaker, random vibration test, system identification, H infinity, vibration test system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨機振動為振動測試中最普遍被採用的項目之一,常用來模擬各種工商產品於實際振動環境之下的耐久性,以確保該產品於生產後的可靠度。本文旨在研製一架構於個人電腦上用於隨機振動測試中振動機的控制器。我們首先對於振動機的操作特性加以分析探討並將相關的控制方式與理論基礎做摘要性的介紹,而後將結合QFT/H∞的控制設計定理應用在具有高度不確定動態特性的振動機上,設計並實驗出一個在高度不確定的條件下,仍然能夠補償整個測試系統已知的頻率特性並維持良好的追蹤與強健特性之控制器。除此之外,對於性質較為複雜的未知待測物,上述之控制方式不足以對整個系統未知的頻率特性加以控制,因此輔助上另一個具有系統鑑別能力控制策略,利用一般的頻率響應估測法對未知動態系統加以鑑別後,利用其結果於頻域中適當的處理後,來消除由未知的待測物與振動機構所引起的機械共振與頻譜失真,達成良好的頻譜控制。巧妙的結合以上這些技巧可達成具有強健性、低成本且高性能的隨機振動測試系統。相關的理論基礎、設計程序與軟硬體實驗皆於本文中詳細的描述,同時,所有設計出的軟硬體系統與所研製控制器的各項性能,均由軟體模擬與硬體實驗後,來驗證其有效性。


    A PC-based controller of the eletrodynamic shaker for random vibration test is developed in this thesis. First, the operation characteristics of the shaker and the control approaches are studied. A combined QFT/H∞ design algorithm is employed to design the controller for such highly uncertain dynamic of the shaker. Then the feedback controller is designed and implemented to compensate the known part of the overall test system and to let the shaker maintain fast tracking performance and robustness under extremely uncertain condition. On the other hand, for more complex DUTs, a typical frequency response estimation scheme is first adopted to identify the frequency response shape of the unknown part of the overall test system, and then the resonance and spectral distortion caused by the device under test can be nearly eliminated by manipulating estimated results. A robust, low cost and good quality random vibration test system can be achieved by combining these control schemes properly. The theoretic basis, design procedures and implementation of the controllers are described in detail. Meanwhile, some significant simulation and experimental results are provided to demonstrate the validity of all the designed circuits and performance of the developed controllers.

    Abstract ii Contents iii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Overview and Contribution of This Thesis 3 Chapter 2 Introduce to Random Vibration Test System 5 2.1 Introduction 5 2.2 Overview of the Vibration Test System 5 2.2.1 Introduction 5 2.2.2 Classification for the Vibration Test System 8 2.2.3 Design Considerations of the Vibration Test System 10 2.3 Dynamic Modeling of an Electrodynamic Shaker 12 Chapter 3 Design of the Shaker Controller — Using Combined QFT/H∞ Control Technique 18 3.1 Introduction 18 3.2 H∞ Control Design Theory 19 3.2.1 H∞ Norm 20 3.2.2 Design Considerations of Feedback Control System 21 3.2.3 System Structure Transformation 25 3.2.4 H∞ Optimal Controller Synthesis 27 3.3 Combined QFT/ H∞ Design Technique 29 3.3.1 Design Procedure 29 3.3.2 Multiplicative Uncertainty Model and Weighting Function WT(s) 31 3.3.3 Sensitivity Function and Weighting Function WS(s) 32 3.3.4 Defining Weighting Function Wun(s) 34 3.3.5 The H∞ Optimization Process 34 3.4 Design Example 37 3.5 Design and Simulation of the Shaker Controller 45 3.6 The Experimental Results 55 3.6.1 Implementation of the Designed Controller 55 3.6.2 Measured Results 57 3.7 Conclusion 61 Chapter 4 Design of the Shaker Controller — Considering More Complex DUTs 62 4.1 Introduction 62 4.2 The Proposed Control Structure 63 4.3 Nonparametric System Identification 65 4.4 Two Feasible Control Approaches for the Shaker 69 4.4.1 Inverse System Spectrum Estimation 69 4.4.2 Power Spectrum Estimation Method 72 4.5 Design and Simulation of the Main Controller 74 4.5.1 The Simulation Model 74 4.5.2 The Simulation Results 80 Chapter 5 Conclusions 88 References 89

    [1]K.G. McConnell, Vibration Testing- Theory and Practice, John Willy & Sons, 1995
    [2]A.M. Karshenas, M.W. Dunigan and B.W. Williams, “A modified structure for multi-resolution analysis of frequency domain self-tuning random vibration control,” Proceedings of the UKACC International Conference on Control, Vol.2, pp.740 – 745, U.K., 1996
    [3]K.C. Lee, “Fuzzy control for vibration testing,” Proceedings of the Fuzzy Systems Symposium Asian, pp.370 – 375, 1996
    [4]S. Salehzadeh-Nobari, J.A. Chambers, T.C. Green, J.K. Goodfellow and W.E.D. Smith, “Implementation of frequency domain adaptive control in vibration test products,”, Proceedings of the 5th International Conference on The Technology Exploitation Process, pp.263 – 268, 1997
    [5]A.M. Karshenas, M.W. Dunigan and B.W. Williams, “Wavelet power spectrum smoothing for random vibration control,” IEEE Transactions on Industrial Electronics, Vol.46, No.2, pp.466 – 467, 1999
    [6]A.M. Karshenas, M.W. Dunigan and B.W. Williams, “Adaptive inverse control algorithm for shock testing,” IEE Proceedings-Control Theory and Applications, Vol.147, No.3, pp.267 – 276, 2000
    [7]T.H. Chen, K.C. Huang and C.M. Liaw, “High-frequency switching-mode power amplifier for shaker armature excitation,” IEE Proceedings-Electric Power Applications, Vol.144, No.6, pp.415 – 422, 1997
    [8]T.H. Chen and C.M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 1, pp.60 – 70, 1999
    [9]C.M. Liaw, W.C. Yu and T.H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Transactions on Industrial Electronics, Vol.49, No. 3 , pp.587– 594, 2002
    [10]M. Stefanello and E.G. Carati, “Environment for random and sinusoidal vibration test control of an inverter-fed electrodynamic shaker,” Proceedings of IEEE International Symposium on Industrial Electronics, Vol.2, pp. 1093 – 1098, 2003
    [11]M.J. Sidi, “A combined QFT/H∞ design technique for TDOF uncertain feedback systems,” International Journal of Control, Vol.75, No.7, pp.475– 489, 2001
    [12]G.F. Franklin, J.D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, 1994
    [13]G.F. Franklin, J.D. Powell and M.L. Workman, Digital Control of Dynamic Systems, Addison-Wesley, 1998
    [14]Ashish Tewari, Modern Control Design with Matlab and Simulink, John Wiley & Sons, 2002
    [15]A.V. Oppenheim, R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice Hall, 1999
    [16]Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, 2001
    [17]Signal Processing Toolbox User’s Guide, The MathWorks Inc., 2002
    [18]DSP Blockset User’s Guide, The MathWorks Inc., 2002
    [19]P. Gahinet, A. Nemirovski and M. Chilali, LMI Control Toolbox for Use with Matlab, Terasoft Inc., 1995
    [20]P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,” International Journal of robust and nonlinear control, Vol.4, pp.421– 448, 1994
    [21]Jeffrey Y. Beyon, LabVIEW Programming, Data Acquisition and Analysis, Prentice Hall, 2001
    [22]S.N. Demidenko and K.V. Lever, “Vibration testing control using spectral warping,” International Conference on Control, Vol.1, pp.214 – 219, 1991
    [23]R.A. Frey, “Random vibration testing for commercial computers,” Proceedings Annual Reliability and Maintainability Symposium, pp.521 – 524, 1991
    [24]R. Fair and H.R. Bolton, “Analysis and design of electromagnetic moving coil vibration generators,” Proceedings of the 6th International Conference on Electrical Machines and Drives, pp. 529 – 534, 1993
    [25]S. Jawaid and P. Rogers, “Accelerated reliability test results: importance of input vibration spectrum and mechanical response of test article,” Proceedings Annual Reliability and Maintainability Symposium, pp.248 – 253, 2000
    [26]F.F. Wang, “Relating sinusoid to random vibration for electronic packaging testing,” Proceedings of the 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.892 – 895, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE