簡易檢索 / 詳目顯示

研究生: 陳育詩
Chen, Yu-Shih
論文名稱: 結合新式光刻固化技術以磁致動組裝模組化水膠細胞結構之研發
The assembling of modular photo-cured cell-embedded hydrogels micromachined by using thin-film photolithography
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 徐文祥
Hsu, Wensyang
盧向成
Lu, Michael S.-C.
饒達仁
Yao, Da-Jeng
陳建甫
Chen, Chien-Fu
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 89
中文關鍵詞: 光刻光感水凝膠聚(乙二醇)二丙烯酸酯明膠甲基丙烯酰磁粉
外文關鍵詞: photolithography, photosensitive hydrogel, PEGDA, GelMA, Magnetic powder
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於復雜、困難或更俱生物學意義的研究課題,在空間中創造三維、多層、可移動的結構是需要發展的技術。光聚合水凝膠材料具有結構可變性和生物相容性的特點,非常適合製造這些複雜的微結構。在這項工作中,我們開發了一種稱為薄膜光刻的方法。通過使用螢光顯微鏡的紫外光在特殊設計的薄膜晶片(PTF晶片)內光聚合水凝膠微結構(聚(乙二醇)二丙烯酸酯,PEGDA 和明膠甲基丙烯酰,GelMA)。PTF 晶片的設計概念是基於紫外光的折射和光衰減所考量的。氧通過多孔 PDMS 材料擴散並抑制水凝膠光交聯。然而,PTF 晶片內微流道側壁內的氧會阻礙光聚合併導致抑制層的形成。在微通道中,我們集成了不同的 PDMS 微結構,通過紫外線照射形成基於水凝膠的微結構和抑制層。也觀察到氣泡在紫外光照射下的水凝膠微結構形成具有相似的影響。之後,我們將水凝膠與磁粉結合製成磁性水凝膠塊。將磁性水凝膠塊和包埋細胞的水凝膠塊交聯並驗證其中的細胞活力。混和10%GelMA與3%PEGDA的水凝膠塊,曝光後的細胞活力還有78%。之後,將磁鐵懸停在磁性水凝膠塊頂部的薄膜上,從而吸引或拖動磁性水凝膠。在這項工作中,通過 PTF晶片上的薄膜,我們可以操縱磁性水凝膠塊並將三塊水凝塊組裝整合成六邊形肝小葉圖案。最後,將此PTF 晶片被放置培養箱。HepG2細胞與3T3細胞被包埋在水凝膠中且共培養。培養液的白蛋白與尿素分泌被檢測。在第四天,共培養組的尿素的分泌物比控制組高出44.9%。



    With complex, difficult, or more biologically meaningful research topics, it is developable and indispensable to create three-dimensional, multi-layered, movable structures or a variety of cells in space. Photopolymerized hydrogel materials have the characteristics of structural variability and biocompatibility, which are very suitable for manufacturing complex microstructures in biotech applications. In this research, the method named thin-film photolithography was developed by using the fluorescent microscope to form photopolymerized hydrogel microarchitectures (poly (ethylene glycol) diacrylate, PEGDA and Gelatin Methacryloyl, GelMA) within the polydimethylsiloxane (PDMS) thin-film chip (PTF chip). Here the design principle of our PTF chips is based on the physical phenomenon of refraction and ultraviolet (UV) light attenuation. However, oxygen within PDMS walls impedes the photopolymerization and causes the formation of the inhibition layers with oxygen diffusing through the porous PDMS materials and inhibiting the hydrogel photocrosslinking. In the microchannel, we integrated different PDMS microstructures to form hydrogel-based microstructures and the inhibition layer via UV light exposure. It was observed that the bubbles have a similar effect on the hydrogel structure formation with respect to the UV light exposure. After that, we combined the hydrogel with magnetic powder to make a magnetic hydrogel block. Cross-linked the magnetic hydrogel block and the hydrogel block with embedded cells and verified the cell viability in it. The hydrogel block mixed with 10% GelMA and 3% PEGDA has 78% cell viability after exposure. Finally, hover the magnet on the thin-film on the top of the magnetic hydrogel block, thereby attracting or dragging the magnetic hydrogel. The formation of hydrogel microstructures developed in this work differs from those exposed by the transparency mask and can be applied to the fields. Through the thin-film on the PTF chip, we can manipulate the magnetic hydrogel block and integrate it into a hexagonal liver lobule pattern. Finally, the PTF chip was placed in the incubator. HepG2 cells and 3T3 cells were embedded in a hydrogel and co-cultured. The secretion of albumin and urea in the culture medium was tested. On the fourth day, urea secretion in the co-culture group was 44.9% higher than that in the control group.

    Table of Contents Abstract………………………………………………………………………………..1 中文摘要………………………………………………………………………………3 Table of Contents………………………………………………………………………4 List of Figures………………………………………………………………………….6 List of Tables………………………………………………………………………… 10 Chapter 1 Introduction 1.1 motivation……………………………………………………………………11 1.2 Hydrogel microstructures in the microchannel…………………………...…14 1.3 PDMS microstructure and hydrogel microstructures in the microchannel….19 1.4 Application of hydrogel in biotechnology…………………………………..26 1.5 Goals………………………………………………………………………...31 Chapter 2 materials and methods 2.1 thin-film photolithography technique…………………..…………………...33 2.2 The design theory of thin-film………………………………………………36 2.3 Material selection and thickness testing of thin-film………………………..40 2.4 The channel size of PTF chip………………………………………………..43 2.5 The fabrication of PTF chip…………………………………………………44 2.6 Cell culture and maintenance………………………………………………..45 2.7 Hydrogel preparation………………………………………………………..45 2.8 Cell staining and cell viability testing and cell-biofunction testing………...46 Chapter 3 Results 3.1 Forming hydrogel by thin-film photolithography……….………………….47 3.2 Forming hydrogel around PDMS structure…………………………………49 3.3 Magnetic hydrogel block and cell-embedded hydrogel block……………...57 3.4 Manipulation of cellular embedding hydrogel block………………………62 3.5 Patterning biomimetic lobule by combined hydrogel blocks………………65 Chapter 4 Discussion………………………………………………………………..72 Chapter 5 Conclusion……………………………………………………………….76 Chapter 6 Future work………………………………………………………………78 References…………………………………………………………………………..80 Publications…………………………………………………………………………85

    [1] Bhise N S, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang Y S, Shin S R, Calzone G, Annabi N, Shupe T D, Bishop C E, Atala A, Dokmeci M R and Khademhosseini A 2016 A liver-on-a-chip platform with bioprinted hepatic spheroids Biofabrication 8 014101
    [2] Snyder J, Son A R, Hamid Q, Wu H L and Sun W 2016 Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system Biofabrication 8 015002
    [3] Ahmed H M M, Salerno S, Morelli S, Giorno L and De Bartolo L 2017 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells Biofabrication 9 025022
    [4] Prigipaki A, Papanikolopoulou K, Mossou E, Mitchell E P, Forsyth V, Selimis A, Ranella A and Mitraki A 2017 Laser processing of protein films as a method for accomplishment of cell patterning at the microscale Biofabrication 9 045004
    [5] Erdman N, Schmidt L, Qin W, Yang X Q, Lin Y L, DeSilva M N and Gao B Z 2014 Microfluidics-based laser cell-micropatterning system Biofabrication 6 035025
    [6] Ong L J Y, Islam A B, DasGupta R, Iyer N G, Leo H L and Toh Y C 2017 A 3D printed microfluidic perfusion device for multicellular spheroid cultures Biofabrication 9 045005
    [7] Banaeiyan A A, Theobald J, Paukstyte J, Wolfl S, Adiels C B and Goksor M 2017 Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform Biofabrication 9 015014
    [8] Kim S, LesherPerez S C, Kim B C C, Yamanishi C, Labuz J M, Leung B and Takayama S 2016 Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip Biofabrication 8 015021
    [9] Kandlikar S G and Grande W J 2004 Evaluation of single phase flow in microchannels for high heat flux chip cooling - Thermohydraulic performance enhancement and fabrication technology Heat Transf. Eng. 25 5-16
    [10] Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B, Stone H A and Di Carlo D 2013 Engineering fluid flow using sequenced microstructures Nat. Commun. 4 8
    [11] Huang L R, Cox E C, Austin R H and Sturm J C 2004 Continuous particle separation through deterministic lateral displacement Science 304 987-990
    [12] McGrath J, Jimenez M and Bridle H 2014 Deterministic lateral displacement for particle separation: a review Lab Chip 14 4139-4158
    [13] Whitesides G M, Ostuni E, Takayama S, Jiang X Y and Ingber D E 2001 Soft lithography in biology and biochemistry Annual Review of Biomedical Engineering 3 335-373
    [14] Chung S E, Park W, Park H, Yu K, Park N and Kwon S 2007 Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels Applied Physics Letters 91 041106
    [15] Dendukuri D, Gu S S, Pregibon D C, Hatton T A and Doyle P S 2007 Stop-flow lithography in a microfluidic device Lab Chip 7 818-828
    [16] Dendukuri D, Pregibon D C, Collins J, Hatton T A and Doyle P S 2006 Continuous-flow lithography for high-throughput microparticle synthesis Nature Materials 5 365-369
    [17] Park W, Lee H, Park H and Kwon S 2009 Sorting directionally oriented microstructures using railed microfluidics Lab Chip 9 2169-2175
    [18] Lee H, Kim J, Kim H, Kim J and Kwon S 2010 Colour-barcoded magnetic microparticles for multiplexed bioassays Nature Materials 9 745-749
    [19] Pregibon D C, Toner M and Doyle P S 2007 Multifunctional encoded particles for high-throughput biomolecule analysis Science 315 1393-1396
    [20] Dendukuri D, Panda P, Haghgooie R, Kim J M, Hatton T A and Doyle P S 2008 Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device Macromolecules 41 8547-8556
    [21] Chung S E, Park W, Shin S, Lee S A and Kwon S 2008 Guided and fluidic self-assembly of microstructures using railed microfluidic channels Nature Materials 7 581-587
    [22] Moon B U, Tsai S S H and Hwang D K 2015 Rotary polymer micromachines: in situ fabrication of microgear components in microchannels Microfluidics and Nanofluidics 19 67-74
    [23] Kaynak M, Ozcelik A, Nama N, Nourhani A, Lammert P E, Crespi V H and Huang T J 2016 Acoustofluidic actuation of in situ fabricated microrotors Lab Chip 16 3532-3537
    [24] Beebe D J, Moore J S, Bauer J M, Yu Q, Liu R H, Devadoss C and Jo B H 2000 Functional hydrogel structures for autonomous flow control inside microfluidic channels Nature 404 588-590
    [25] Attia R, Pregibon D C, Doyle P S, Viovy J L and Bartolo D 2009 Soft microflow sensors Lab Chip 9 1213-1218
    [26] Bong K W, Pregibon D C and Doyle P S 2009 Lock release lithography for 3D and composite microparticles Lab Chip 9 863-866
    [27] Lee S A, Chung S E, Park W, Lee S H and Kwon S 2009 Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography Lab Chip 9 1670-1675
    [28] Tumbleston J R, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson A R, Kelly D, Chen K, Pinschmidt R, Rolland J P, Ermoshkin A, Samulski E T and DeSimone J M 2015 Continuous liquid interface production of 3D objects Science 347 1349-1352
    [29] Chung S E, Jung Y and Kwon S 2011 Three-Dimensional Fluidic Self-Assembly by Axis Translation of Two-Dimensionally Fabricated Microcomponents in Railed Microfluidics Small 7 796-803
    [30] Sim J Y, Lee G H and Kim S H 2015 Microfluidic Design of Magnetoresponsive Photonic Microcylinders with Multicompartments Small 11 4938-4945
    [31] Habasaki S, Lee W C, Yoshida S and Takeuchi S 2015 Vertical Flow Lithography for Fabrication of 3D Anisotropic Particles Small 11 6391-6396
    [32] Pereira R F and Bartolo P J 2015 3D Photo-Fabrication for Tissue Engineering and Drug Delivery Engineering 1 90-112
    [33] Zhu J M 2010 Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering Biomaterials 31 4639-4656
    [34] Peppas N A, Bures P, Leobandung W and Ichikawa H 2000 Hydrogels in pharmaceutical formulations European Journal of Pharmaceutics and Biopharmaceutics 50 27-46
    [35] Zhou L, Tan G X, Tan Y, Wang H, Liao J W and Ning C Y 2014 Biomimetic mineralization of anionic gelatin hydrogels: effect of degree of methacrylation RSC Adv. 4 21997-22008
    [36] Tan G X, Zhou L, Ning C Y, Tan Y, Ni G X, Liao J W, Yu P and Chen X F 2013 Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels Appl. Surf. Sci. 279 293-299
    [37] Annabi N, Selimovic S, Cox J P A, Ribas J, Bakooshli M A, Heintze D, Weiss A S, Cropek D and Khademhosseini A 2013 Hydrogel-coated microfluidic channels for cardiomyocyte culture Lab Chip 13 3569-3577
    [38] Visser J, Gawlitta D, Benders K E M, Toma S M H, Pouran B, van Weeren P R, Dhert W J A and Malda J 2015 Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles Biomaterials 37 174-182
    [39] Nemeth C L, Janebodin K, Yuan A E, Dennis J E, Reyes M and Kim D H 2014 Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels Tissue Eng. Part A 20 2817-2829
    [40] Qi H, Du Y A, Wang L Y, Kaji H, Bae H J and Khademhosseini A 2010 Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels Adv. Mater. 22 5276-5281
    [41] Benton J A, Fairbanks B D and Anseth K S 2009 Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels Biomaterials 30 6593-6603
    [42] Fan Y T, Xu F, Huang G Y, Lu T J and Xing W L 2012 Single neuron capture and axonal development in three-dimensional microscale hydrogels Lab Chip 12 4724-4731
    [43] Zhao X, Lang Q, Yildirimer L, Lin Z Y, Cui W G, Annabi N, Ng K W, Dokmeci M R, Ghaemmaghami A M and Khademhosseini A 2016 Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering Adv. Healthc. Mater. 5 108-118
    [44] Tamayol A, Najafabadi A H, Aliakbarian B, Arab-Tehrany E, Akbari M, Annabi N, Juncker D and Khademhosseini A 2015 Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs Adv. Healthc. Mater. 4 2146-2153
    [45] Zamanian B, Masaeli M, Nichol J W, Khabiry M, Hancock M J, Bae H and Khademhosseini A 2010 Interface-Directed Self-Assembly of Cell-Laden Microgels Small 6 937-944
    [46] Loessner D, Meinert C, Kaemmerer E, Martine L C, Yue K, Levett P A, Klein T J, Melchels F P W, Khademhosseini A and Hutmacher D W 2016 Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms Nat. Protoc. 11 727-746
    [47] Zuo Y C, Liu X L, Wei D, Sun J, Xiao W Q, Zhao H, Guo L K, Wei Q R, Fan H S and Zhang X D 2015 Photo-Cross-Linkable Methacrylated Gelatin and Hydroxyapatite Hybrid Hydrogel for Modularly Engineering Biomimetic Osteon ACS Appl. Mater. Interfaces 7 10386-10394
    [48] Tsang V L, Chen A A, Cho L M, Jadin K D, Sah R L, DeLong S, West J L and Bhatia S N 2007 Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels Faseb J. 21 790-801
    [49] Kimura Y, Ozeki M, Inamoto T and Tabata Y 2003 Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor Biomaterials 24 2513-2521
    [50] Tsang V L and Bhatia S N 2007 Tissue Engineering Ii: Basics of Tissue Engineering and Tissue Applications, ed K Lee and D Kaplan (Berlin: Springer-Verlag Berlin) pp 189-205
    [51] Yamato M and Okano T 2004 Cell sheet engineering Mater. Today 7 42-47
    [52] Zeltinger J, Sherwood J K, Graham D A, Mueller R and Griffith L G 2001 Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition Tissue Eng. 7 557-572
    [53] Sachlos E, Reis N, Ainsley C, Derby B and Czernuszka J T 2003 Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication Biomaterials 24 1487-1497
    [54] Fu C Y, Lin C Y, Chu W C and Chang H Y 2011 A Simple Cell Patterning Method Using Magnetic Particle-Containing Photosensitive Poly (Ethylene Glycol) Hydrogel Blocks: A Technical Note Tissue Eng. Part C-Methods 17 871-877
    [55] Fu C Y, Tseng S Y, Yang S M, Hsu L, Liu C H and Chang H Y 2014 A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis Biofabrication 6 015009

    QR CODE