簡易檢索 / 詳目顯示

研究生: 余麥思
Yu, Mai-Si.
論文名稱: 建構半導體精密製造異常解決之決策支援系統
Construct a Decision Support System for Solving Abnormal Problems in Semiconductor Precision Manufacturing Processing
指導教授: 簡禎富
Chien, Chen-Fu.
口試委員: 黃怡詔
Huang, Yi-Jau.
王宏鍇
Wang, H.-K.
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 61
中文關鍵詞: 探針卡半導體産業資料挖礦決策支援系統良率提升
外文關鍵詞: Probe card, Data mining, Semiconductor industry, Decision support system, yield enhancement
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體産業下與探針卡相關的精密元件製造過程中,因製程複雜、不穩定,且影響良率的變因衆多等因素,所製造的産品易出現OOS(Out of Spec)或是外觀異常的問題,致使産品良率不佳,造成損失;另一方面,缺乏異常排除決策及知識管理機制使得工程師往往需要以試誤法或依據個人經驗排除異常問題,以致影響故障排除效率和決策品質,機台參數設定項目衆多、製程模具構造複雜也致使工程師難以從過往的經驗中發覺導致異常狀況的原因並採取有效的問題解決手段,因而造成了異常排除次數頻繁且效率低、耗時長的缺點,大大影響産能。本研究針對上述問題,整合了資料挖礦技術、個案式推理循環機制與簡易多屬性評等模式,並提出了一個異常解決之決策支援系統架構,綜合考量資料面之潛在規則與領域專家知識,實現了彈性決策需求下最優決策方案建議,從而協助工程師快速且有效的排除製程異常狀況並達到了提升製程良率、加強企業競爭力之最終目的。最後,本論文以產學合作研究的廠商為實證研究,以某半導體廠之實際異常處理資料驗證了該系統架構之可行性與效度,並探討未來研究方向。


    In the manufacturing process of precision components in the semiconductor industry, due to the complicated and unstable manufacturing process and many factors that affect the yield, the OOS (Out of Spec) or the abnormal appearance of the manufactured product is prone to occur, it is increasingly difficult to enhance the yield. To address potential quality issues, lacking of decision-making and knowledge management mechanisms made it necessary for engineers to use trial-and-error methods or based on personal experience to solve abnormal problems. However, the large number of machine parameter setting items and the complex construction of process molds make it difficult for engineers to discover the causes of abnormal problems from their past experience and to adopt an effective problem solving method. Therefore, the frequency of the solving abnormal problems is frequent, the efficiency is low, and the time consuming is long, which greatly affects the production capacity. Focusing on these issues, this thesis aims to integrate the data mining technology, case-based reasoning cycle mechanism and simple multi-attribute rating model, and thus propose an decision support system (DSS) architecture to effectively address abnormal issues via integrated solutions that comprehensively considers the potential rules derived from database and domain expert knowledge. The proposed solution can provide the optimal decision suggestions under a flexible decision-making requirements, which helps the engineers to quickly and effectively solve the abnormal problems and achieve the ultimate goal of improving the process yield and strengthening the competitiveness of enterprises. Finally, the feasibility and validity of the proposed DSS architecture is estimated with the abnormal data collected in a semiconductor factory.

    目錄 i 表目錄 iii 圖目錄 iv 第一章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究目的 2 1.3 論文結構 3 第二章 文獻回顧 4 2.1 半導體産業背景介紹 4 2.1.1 晶圓探針卡 4 2.2 資料挖礦理論架構及方法 5 2.2.1 關聯規則 6 2.2.2 貝氏分類法與貝氏網絡 8 2.3 CBR結合資料挖礦於問題診斷與決策支援系統之應用 9 2.3.1 CBR推理循環機制 10 2.4 簡易多屬性評等技術 12 2.5 方法比較 13 第三章 研究架構 15 3.1 問題定義 15 3.2 資料準備 16 3.2.1 資料前處理 16 3.2.2 變量篩選 17 3.3 資料挖礦模式建立 17 3.3.1 關聯規則分析模型 17 3.3.2 貝氏分類預測模型 20 3.4 個案式推理架構 23 3.4.1 異常問題判別 24 3.4.2 CBR循環模式 25 3.5 簡易多屬性評等技術 27 3.6 結果驗證與評估 32 第四章 實證研究 33 4.1 系統環境、資料來源及資料存儲模式 33 4.2 雛形系統功能介紹及模型建置流程概述 34 4.2.1 雛形系統功能介紹 34 4.2.2 異常問題判別模塊 35 4.2.3 資料挖礦分析模塊 36 4.2.4 個案推理及資料維護模塊 41 4.2.5 多屬性決策模塊 44 4.3 模型驗證及結果分析 48 4.3.1 異常分類判別模型結果驗證 48 4.3.2 貝式分類模型結果驗證 49 4.3.3 關聯規則結果分析 50 4.3.4 CBR推理模式及多屬性決策模型效益分析 52 第五章 結論與後續研究方向 55 5.1 研究貢獻及限制 55 5.2 未來研究 56 參考文獻 58

    王鴻儒、徐紹鐘、簡禎富、李培瑞(2002),決策樹資料挖礦架構及其於半導體製程之實證研究,科技管理學刊,7(1),137-160。
    林繼勇、簡禎富、胡志翰 (2008),紫式決策分析以建構液晶原料廠製程確效評估模式,品質學報,15(5),385-398。
    洪秀婉(2002),台灣半導體產業垂直分工之探討,國立交通大學經營管理研究所博士論文。
    孫笑微、趙大宇、李曉毅、唐恒永(2006),用於數據挖掘的TAN分類器的研究與應用,計算機技術與發展,16(11),140-142。
    陳世宗、籃山明(2011),探針接觸特性對於晶圓良率測試之研究,先進工程學刊,6(2),103-109。
    梁惠姿(2005),建構半導體製造過程產品異常資料挖礦技術之研究,國立清華大學工業工程與工程管理學系碩士論文。
    黃怡詔、簡禎富、劉志明、賴威齊、劉昕昶(2004),建構網際網路環境下之醫院主管資訊系統及其實證研究,工業工程學刊,21(2),101-112。
    黃榮堂、賴文雄(2003),晶圓級探針卡簡介,機械工業雜誌,257。
    彭金堂、張盛鴻、簡禎富、楊景晴(2005),建構關聯規則資料挖礦架構及其在台電配電事故定位之研究,資訊管理學報,12(4),121-141。
    鄭鈞鴻(2012),基於樹增強型單純貝氏網路之文件分類方法,國立臺灣科技大學資訊管理系碩士論文。
    簡禎富(2005),決策分析與管理,雙葉書廊,臺北。
    簡禎富(2017),如何先打造出『工業3.5』的能力,哈佛商業評論全球繁體中文版,128(4),46-54。
    簡禎富、林昀萱、鄭仁傑(2008),建構模糊決策樹及其在有交互作用之半導體資料之資料挖礦以提昇良率之研究,品質學報,15(3),193-210。
    簡禎富、林國義、許鉅秉、吳政鴻(2016),台灣生產與作業管理之相關期刊文獻回顧與前瞻:從工業 3.0 到工業 3.5,管理學報,33(1),87-103。
    簡禎富、施義成、林振銘、陳瑞坤(2005),半導體製造技術與管理,國立清華大學出版社,新竹。
    簡禎富、許嘉裕(2014),資料挖礦與大數據分析,前程文化,臺北。
    簡禎富、游智閔、徐紹鐘(2009),紫式決策分析以建構半導體晶圓廠人力規劃決策模型,管理與系統,16(2),157-180。
    簡禎富、蕭禮明、王興仁(2004),建構半導體製造管理目標層級架構與製造資料之資料挖礦,工業工程學刊,21(4),313-327。
    Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record, 22(2), 207-216.
    Bichindaritz, I. (2015). Data Mining Methods for Case-Based Reasoning in Health Sciences. In ICCBR (Workshops), 184-198.
    Bruland, T., Aamodt, A., & Langseth, H. (2010, October). Architectures integrating case-based reasoning and bayesian networks for clinical decision support. In International Conference on Intelligent Information Processing, 82-91.
    Chien, C. F., Chen, S. L., & Lin, Y. S. (2002). Using Bayesian network for fault location on distribution feeder. IEEE Transactions on Power Delivery, 17(3), 785-793.
    Chien, C. F., Wang, W. C., & Cheng, J. C. (2007). Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications, 33(1), 192-198.
    Chiu, C. Y., Lo, C. C., & Hsu, Y. X. (2007). Integrating bayesian theory and fuzzy logics with case-based reasoning for car-diagnosing problems. In Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on, 4, 344-348.
    De Mantaras, R. L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., ... & Keane, M. (2005). Retrieval, reuse, revision and retention in case-based reasoning. The Knowledge Engineering Review, 20(3), 215-240.
    Edwards, W. (1977). 12 Use of Multiattribute Utility Measurement for Social Decision Making. Conflicting, 247.
    Fayyad, U. M. (1996). Data mining and knowledge discovery in databases: applications in astronomy and planetary science. In Proceedings of the thirteenth national conference on Artificial intelligence, 2, 1590-1592.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
    Hsu, S. C., & Chien, C. F. (2007). Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing. International Journal of Production Economics, 107(1), 88-103.
    Huang, M. J., Chen, M. Y., & Lee, S. C. (2007). Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis. Expert systems with applications, 32(3), 856-867.
    Liu, B., Hsu, W., & Ma, Y. (1999, August). Mining association rules with multiple minimum supports. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, 337-341.
    Maimon, O., & Rokach, L. S. (2001). Data mining by attribute decomposition with semiconductor manufacturing case study. In Data mining for design and manufacturing, 311-336.
    McCallum, A., & Nigam, K. (1998, July). A comparison of event models for naive bayes text classification. In AAAI-98 workshop on learning for text categorization, 752(1), 41-48.
    Mohammed, M. A., Al-Khateeb, B., & Ibrahim, D. A. (2016). Case based reasoning shell frameworkas decision support tool. Indian Journal of Science and Technology, 9(42).
    Moore, Gordon (1965), “Cramming More Components onto Integrated Circuits,” Electronics, 38(8), 114-117.
    Muralidharan, V., & Sugumaran, V. (2012). A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Applied Soft Computing, 12(8), 2023-2029.
    Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine learning, 29(2-3), 131-163.
    Rai, D., Verma, K., & Thoke, A. S. (2012). Msapriori using total support tree data structure. International Journal of Computer Applications, 43(23), 45-49.
    Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., & Cowell, R. G. (1993). Bayesian analysis in expert systems. Statistical science, 219-247.
    Subbalakshmi, G., Ramesh, K., & Rao, M. C. (2011). Decision support in heart disease prediction system using naive bayes. Indian Journal of Computer Science and Engineering (IJCSE), 2(2), 170-176.
    Verma, L., Srinivasan, S., & Sapra, V. (2014, February). Integration of rule based and case based reasoning system to support decision making. In Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on, 106-108.
    Wu, J. Z., & Chien, C. F. (2008). Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings. OR spectrum, 30(3), 401-430.
    Zheng, F., & Webb, G. I. (2011). Tree augmented naive Bayes. In Encyclopedia of Machine Learning, 990-991.

    無法下載圖示 全文公開日期 2023/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE