簡易檢索 / 詳目顯示

研究生: 黃國權
Kuo-Chuan Huang
論文名稱: Passive Gradient Generator and Cell Manipulation Integrated with Dielectrophoresis for Chemotaxis Study
整合被動式梯度產生器及介電泳操控細胞元件於生物趨向性研究
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 54
中文關鍵詞: 趨化梯度介電泳操控
外文關鍵詞: Chemotaxis, Gradient, Dielectrophoresis, Manipulation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 到目前為止,在生命科學方面上微型化是近期內的主要趨勢。隨著微機電技術的發展,使得在過去幾十年裡發展出許多微流體元件,如:微混和器、微閥門和樣品的檢測器。隨著實驗室晶片技術的進步,使得微機電元件符合生物分子尺度,因此在過去幾十年裡,吸引了許多研究者在生物領域上應用的興趣,並且投入許多心血與努力。細胞許多的行為並非單靠單一刺激,而是結合許多複雜的化學刺激反應而有的生物反應。因此化學濃度梯度產生器在研究許多生物行為過程是一個很重要的工具,此論文即研究細胞受到不同化學濃度環境下的反應行為。
    本研究為設計一實驗室晶片以觀察與分析細胞在趨化因子(chemotactic)濃度梯度環境上的相關遷移情形。利用一些複雜的流道結構設計來提升擴散效率以快速產生穩定且連續的趨化因子濃度梯度。藉由施予不同頻率的交流電壓,使細胞表面被極化成電偶極的基礎下,利用介電泳的概念去操控細胞群,使其在趨化因子濃度梯度下能快速精確分佈在特定位置以利研究其生物行為。以上所有功能皆以簡單的製程整合於一晶片上。


    Up to now, miniaturization is the recent trend in life sciences. With the emergence of MEMS technologies, many microfluidic components, such as micromixers, microvalves and sample dispensers were developed over the past decade. With the advancement of lab-on-a-chip technology, the applications in biological field have been attracting a significant attention in the past few decades. Complex cellular responses do not only depend on one stimulus but on the integrated information from several stimulus. The concentration gradient generator is an important tool in many biological processes. One of the biological processes is chemotaxis that this thesis wants to study.
    This research presents a Lab-on-a chip device to achieve and study cells migration in chemotactic concentration gradient. Used the channel geometry complicated enough to fast produce the stable and continued chemotatic concentration gradient. Based on the polarity difference within cells caused by applying different frequencies of the input voltage, we could use the concept of dielectrophoresis (DEP) to control cells to distribute uniformly on a horizontal line in chemotactic concentration gradient for studying the behavior of cells. These functions could be all integrated on a chip and achieved with easy fabrication process.

    第一章 緒論 - 1 - 1-1 背景與動機 - 1 - 1-2 文獻回顧 - 4 - 1-2-1 被動式微混合器 - 4 - 1-2-2 梯度晶片 - 7 - 1-2-3 微操控元件 - 9 - 第二章 晶片設計發展 - 15 - 2-1 主要理論 - 15 - 2-1-1 介電泳 - 15 - 2-1-2 微米尺度下的質量傳遞 - 19 - 2-2 晶片設計概念 - 21 - 2-3 理論分析與數值模擬 - 26 - 2-3-1 棋盤格型梯度產生器 - 27 - 2-3-2 細胞的操控 - 30 - 第三章 晶片製作 - 32 - 3-1 製程流程 - 32 - 3-2 製程結果 - 34 - 第四章 實驗架設與結果 - 36 - 4-1 實驗設備的架設 - 36 - 4-2 材料的準備 - 37 - 4-3 實驗量測結果 - 38 - 4-3-2 梯度產生器 - 38 - 4-3-3 未受DEP作用的細胞趨化實驗 - 41 - 4-3-4 受正DEP之細胞實驗 - 46 - 第五章 結論 - 51 - 5-1 結論 - 51 - 參考資料 - 53 -

    [1] http://www.gluegrant.org/chemotaxis.htm
    [2] Helene Andersson, Albert van den Berg. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab. Chip, 2004, 4, 98–103
    [3] Jens Branebjerg, Peter Gravesen, Jens Peter Krog and Claus Rye Nielsen Danfoss AIS, DK-6430 Nordborg, Denmark. Fast mixing by lamination. MEMS’96, 9th IEEE Int. Workshop Micro Electromechanical System(San Diego, CA), 1996, pp 441-6
    [4] Seck Hoe Wong, Patrick Bryant, Michael Ward, Christopher Wharton. Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sensor Actuators B, 2003, 95 414-24
    [5] SJ Park, JK Kim, J. Park, S. Chung and JK Chang. Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech. Microeng, 2004, 14 6-14
    [6] Stephan K. W. Dertinger, Daniel T. Chiu, Insung S. Choi, Abraham D. Stroock, and George M. Whitesides. Generation of Solution and Surface Gradients Using Microfluidic Systems. Langmuir, 2000 16 8311-8316
    [7] L.Zhu, Q.Zhang, H.H.Feng, S.Ang, F.S. Chau, W.T. Liu. Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab Chip,2004,4 (4) 337-341
    [8] H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, IEEE Trans. Development of a rare cell fractionation device: application for cancer detection. Nanobiosci., 2004, 3 251 .
    [9] J. Moorthy, D.J. Beebe. In situ fabricated porous filters for Microsystems. Lab Chip, 2003, 3 62.
    [10] Huang L R, Cox E C, Austin R H, Sturm J C. Continuous particie separation through deterministic lateral displacement. Science, 2004, 304(5673): 987∼990.
    [11] A. Khademhosseini, J. Yeh, S. Jon, G Eng, K.Y. Suh, J.A. Burdick, R. Langer. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip, 2004, 4 425.
    [12] H. Tani, K. Maehana, T. Kamidate. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal. Chem., 2004, 76 6693
    [13] A. Revzin, R.G. Tompkins, M. Toner. Surface Engineering with Poly(ethylene glycol) Photolithography to Create High-Density Cell Arrays on Glass. Langmuir, 2003, 19 9855.
    [14] C.J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim. Polysilicon Microgripper. Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, 1900, 48-51, Jun.
    [15] J. Lahann, M. Balcells, H. Lu, T. Rondon, K.F. Jensen, R. Lange. Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices. Anal. Chem. 2003, 75 2117.
    [16] B.J Kirby, A.R. Wheeler, R.N. Zare, J.A. Fruetel, T.J. Shepodd. Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip, 2003 3 5-10.
    [17] J.D. Cox, M.S. Curry, S.K. Skirboll, P.L. Gourley, D.Y. Sasaki. Surface passivation of a microfluidic device to glial cell adhesion: a comparison of hydrophobic and hydrophilic SAM coatings. Biomaterials, 2002, 23 929.
    [18] http://www.physics.uq.edu.au/people/nieminen/trapping.html
    [19] Haibo Li and Rashid Bashir. Dielectrophoretic separation and manipulation of live and heat-treat cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuator B, 2002, 86 215-221.
    [20] C.C. Chen, and S. Zappe. Microfluidic Switch for Embryo and Cell Sorting. 2E65.P, Transducers, 2003
    [21] T. B. Jones. Basic theory of dielectrophoresis and electrorotation. IEEE Engineering in Medicine and Biology Magazine, 2003, Nov/Dec, 33-42.
    [22] C-T Ho, R-z Un, W-Y Chang, H-Y Chang and C-H Liu. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip, 2006, 6, 724
    [23] Glenn M. Walker, Jiqing Sai, Ann Richmond, Mark Stremler, Chang Y. Chung and John P. Wikswo. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 2005, 5, 611–618
    [24] Francis Lin, Connie Minh-Canh Nguyen, Shur-Jen Wang, Wajeeh Saadi, Steven P. Gross and Noo Li Jeon. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochemical and Biophysical Research Communications, 2004, 319 576–581

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE