研究生: |
普諾莫 Purnomo, Agung |
---|---|
論文名稱: |
光學吸收增益奈米柱陣列設計銅鋅錫硒太陽能電池 Design of Light Absorption Improvement on Nanorod-Based CZTSe Solar Cells |
指導教授: |
闕郁倫
Chueh, Yu-Lun |
口試委員: |
蔡淑如
Tsai, Shu-Ju 沈昌宏 Shen, Chang-Hong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 銅鋅錫硒太陽能電池 、奈米棒 、時域有限差分法模擬 |
外文關鍵詞: | CZTSe, nanorods, FDTD simulations |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是光學吸收增益奈米柱陣列設計銅鋅錫硒太陽能電池。這項研究還提出了製造基於納米棒的銅鋅錫硒太陽能電池的理想工藝。時域有限差分模擬顯示隨著載子流生成的增強,周期性與孔隙率也跟著被優化;模擬結果顯示,由於場強度集中於銅鋅錫硒太陽能電池奈米棒的中央,電流密度比起對照組(45.08 mA/cm2)要提升了4.41%(47.16 mA/cm2),實際應用時元件效率卻僅有1.36%,顯示出銅鋅錫硒太陽能電池奈米棒於氧化鋁奈米模板孔隙中的形成機制與在正常平面電極上的機制不同。為了得到均相的銅鋅錫硒太陽能電池相變化,需要延長硒化反應的時間。
This thesis is based on Cu2ZnSnSe4 (CZTSe) thin film solar cells focusing on designing new strategies in light harvesting to solve the critical issues of insufficient light absorption by FDTD Simulation. This research also stated fancy process to fabricate nanorods based solar CZTSe cells. Finite difference time domain (FDTD) simulation optimized the periodicity and porosity according to the carrier generation enhancement. The simulation results showed that 4.41% increment of JSC of 47.16 mA/cm2 compared with 45.08 mA/cm2 of the thin film counterpart due to concentrated field intensity at the center of the CZTSe NRs. Practical application by AAO template and electrodeposition method resulted the devices efficiency of only 1.36 %. Mechanism of CZTSe NRs formation inside the of pores of AAO templates turned out to be different from those on regular planar electrodes. Prolonged selenization duration should be applied for homogeneous CZTSe phase transformation.
[1] C. F. Maduko and U. B. Akuru, "Future Trends on Global Energy Demand," in Energy Sources for Power Generation , Nsukka, 2013.
[2] ExxonMobil, "2012 The Outlook for Energy: A View to 2040," ExxonMobil, 2012.
[3] W. E. C. 2016, "World Energy Resources 2016," World Eneergy Council, London, 2016.
[4] E. S. A and S. M, "Environmental and Health Impact of Coal Use for Energy Production," Egyptian Journal of Occupational Medicine, , vol. 37 , no. 2, pp. 181-194, 2013.
[5] REN21, "Renewables 2019 Global Status Report," REN21 Secretariat, Paris, 2019.
[6] G. Masson and I. Kaizuka, "Trends in Photovoltaic Applications 2019," International Energy Agency Photovoltaic Power Systems Programme, St. Ursen, 2019.
[7] t. U. S. Government, Basic Photovoltaic Principles and Methods, Washington DC 20402: U.S. Government Printing Office, 1982.
[8] M. Wasfi, "Solar Energy and Photovoltaic Systems," Journal of Selected Areas in Renewable and Sustainable Energy (JRSE), pp. 1-8, 2011.
[9] N. Taylor and A. Jäger-Waldau, "Low Carbon Energy Observatory Photovoltaics Technology Development Report 2018," European Union, 2019, Luxemburg, 2019.
[10] K. L. Chopra, D. P. Paulson and V. Dutta, "Thin-Film Solar Cells: An Overview," Progress in Photovoltaics: esearch and Applications, vol. 12, no. John Wiley & Sons, Ltd., p. 69–92, 2004.
[11] M. A. Green, "Thin-film solar cells: review of materials, technologies and commercial status," Journal of Materials Science: Materials in Electronics, vol. 18, no. DOI 10.1007/s10854-007-9177-9, p. S15–S19, 2007.
[12] J. Ramanujam and U. P. Singhb, "Copper indium gallium selenide based solar cells – a review," Energy & Environmental Science, vol. 10, no. 6, pp. 1306-1319, 2017.
[13] J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells – a review," Energy & Environmental Science, vol. 1306, p. 10, 2017.
[14] S. Giraldo, Z. Jehl, M. Placidi, V. I. Roca, A. P. Rodríguez and E. Saucedo, "Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review," Advanced Materials, vol. 31, p. 1806692 , 2019.
[15] Y. F. Hsu, Y. Y. Xi, A. B. Djurišić and . W. K. Chan, "ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition," Applied Physics Letters, vol. 92, p. 133507, 2008.
[16] S. Vallisree, R. Thangavel and T. R. Lenka, "Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device," Journal of Materials Science: Materials in Electronics, vol. 29, p. 7262–7272, 2018.
[17] O. A. Abdelraouf and N. K. Allam, "Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: Coupled optical and electrical modeling," Optical Materials , vol. 54 , pp. 84-88, 2016.
[18] S. Wagner, J. L. Shay and P. Migliorato, "CulnSe2/CdS heterojunction photoYoltaic detectors," Applied Physics Letters 25, vol. 434, pp. 434-435, 1974.
[19] J. L. Shay, S. Wagner and H. M. Kasper, "Efficient CuInSe2/CdS solar cells," Applied Physics Letters 27, vol. 89, pp. 89-90, 1975.
[20] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi and A. M. Hermann, "High-efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films," Applied Physics Letters., vol. 65, pp. 198-200, 1994.
[21] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, vol. 19, p. 894–897, 2011.
[22] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier and M. Powalla, "Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%," Physics Status Solidi RRL, vol. 9, no. 1, p. 28–31, 2015.
[23] R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai, T. Kato and H. Sugimoto, "New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22%," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, 2016.
[24] A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler and A. N. Tiwari, "Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells," Nature Materials, vol. 12, pp. 1107-1111, 2013.
[25] N. Nicoara, T. Lepetit, L. Arzel, S. Harel, N. Barreau and S. Sadewasser, "Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films," Scientific Reports, vol. 7, p. 41361, 2017.
[26] A. Stokes, M. Al-Jassim, D. Diercks, A. Clarke and B. Gorman, "Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se2 Grain Boundaries," Scientific Reports, vol. 7, p. 4163, 2017.
[27] D. Colombara, U. Berner, A. Ciccioli, J. C. Malaquias, T. Bertram, A. Crossay, M. Schöneich, H. J. Meadows, D. Regesch, S. Delsante, G. Gigli, N. Valle, J. Guillot, B. E. Adib, P. Grysan and P. J. Dale, "Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2," Scientific Reports, vol. 7, p. 43266, 2017.
[28] M. Wang, M. A. Hossain and K.-L. Choy, "Effect of Sodium Treatment on the Performance of Electrostatic Spray Assisted Vapour Deposited Copperpoor Cu(In,Ga)(S,Se)2 Solar Cells," Scientific Reports, vol. 7, p. 6788, 2017.
[29] W. Li, X. Yan, A. G. Aberle and S. Venkataraj, "Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process," Scientific Reports , vol. 9, p. 2637, 2019.
[30] W. Hsu, C. M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H.-P. Wang, C.-C. Chiang and A. Javey, "Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells," Scientific Reports | , vol. 5, p. 16028, 2015.
[31] C. B. Mo, S. J. Park, S. Bae, M.-h. Lim, J. Nam, D. Kim, J. Yang, D. Suh, B. K. Min, D. Kim, Y. Kang, Y.-S. Kim and H.-s. Lee, "Impact of Buffer Layer Process and Na on Shunt Paths of Monolithic Series-connected CIGSSe Thin Film Solar Cells," Scientific Reports, vol. 9, p. 3666, 2019.
[32] F. Werner, B. Veith-Wolf, M. Melchiorre, F. Babbe, J. Schmidt and S. Siebentritt, "Ultra-thin passivation layers in Cu(In,Ga)Se2 thin-film solar cells: full-area passivated front contacts and their impact on bulk doping," Scientific Reports, vol. 10, p. 7530, 2020.
[33] S.-C. Chen, K.-H. Wu, J.-X. Li, A. Yabushita, S.-H. Tang, C. W. Luo, J.-Y. Juang, H.-C. Kuo and Y.-L. Chueh, "In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy," Scientific Reports |, vol. 5, p. 18354, 2015.
[34] F. Khan and J. H. Kim, "Emission-wavelength-dependent photoluminescence decay lifetime of N-functionalized graphene quantum dot downconverters: Impact on conversion efficiency of Cu(In, Ga)Se2 solar cells," Scientific Reports, vol. 9, p. 10803, 2019.
[35] J. B. Li, V. Chawla and B. M. Clemens, "Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy," Advanced Materials, vol. 24, p. 720–723, 2012.
[36] K. Ito and T. Nakazawa, "Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films," Japanese Journal of Applied Physics, vol. 27, pp. 2094-2097, 1988.
[37] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito and T. Motohiro, "Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique," Applied Physics Express, vol. 1, p. 041201, 2008.
[38] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovolt: Res. Appl., vol. 21, p. 72–76, 2013.
[39] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, M. Krunks, T. Varema and E. Mellikov, "Cu2ZnSnSe4 Monograin Powders for Solar Cell Application," in IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, 2006.
[40] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M. Peter, "Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors," Prog. Photovolt: Res. Appl., vol. 17, p. 315–319, 2009.
[41] T. K. Todorov, K. B. Reuter and D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber," Adv. Mater., vol. 22, p. E156–E159, 2010.
[42] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell," Prog. Photovolt: Res. Appl., vol. 20, p. 6–11, 2012.
[43] T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu and D. B. Mitzi, "Beyond 11% Effi ciency: Characteristics of State-of-the-Art Cu 2 ZnSn(S,Se) 4 Solar Cells," Adv. Energy Mater., vol. 3, p. 34–38, 2013.
[44] W. Wang, M. T. Winkler, O. Gunawan , T. Gokmen, T. K. Todorov , Y. Zhu and D. B. Mitzi , "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energy Mater., vol. 4, p. 1301465, 2014.
[45] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J. Y. Kim and J. Moon, "Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route," SCIENTIFIC REPORTS |, vol. 3, p. 3069, 2013.
[46] M. Krause, A. Nikolaeva, M. Maiberg, P. Jackson, D. Hariskos, W. Witte, J. A. Márquez, S. Levcenko, T. Unold, R. Scheer and D. Abou-Ras, "Microscopic origins of performance losses in highly efficient Cu(In,Ga)Se2 thin-film solar cells," NATURE COMMUNICATIONS, vol. 11, p. 4189, 2020.
[47] H.-W. Tsai, C.-W. Chen, S. R. Thomas, C.-H. Hsu, W.-C. Tsai, Y.-Z. Chen, Y.-C. Wang, Z. M. Wang, H.-F. Hong and Y.-L. Chueh, "Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition," Scientific Reports, vol. 6, p. 19102, 2016.
[48] G. Altamura, M. Wang and K.-L. Choy, "Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells," Scientific Reports, vol. 6, p. 22109, 2016.
[49] A. Aldalbahi, E. M. Mkawi, K. Ibrahim and M. A. Farrukh, "Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition," Scientific Reports, vol. 6, p. 32431, 2016.
[50] J. Zhong, Z. Xia, M. Luo, J. Zhao, J. Chen, L. Wang, X. Liu, D.-J. Xue, Y.-B. Cheng, H. Song and J. Tang, "Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells," SCIENTIFIC REPORTS, vol. 4, p. 6288, 2014.
[51] C.-Y. Su, C. -Y. Chiu and J.-M. Ting, "Cu2ZnSnS4 absorption layers with controlled phase purity," SCIENTIFIC REPORTS , vol. 5, p. 9291, 2015.
[52] M. V. Jyothirmai, H. Saini, N. Park and R. Thapa, "Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study," Scientific Reports, vol. 9, p. 15983, 2019.
[53] B. Ananthoju, J. Mohapatra, M. K. Jangid, D. Bahadur, N. V. Medhekar and M. Aslam, "Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance," Scientific Reports, vol. 6, p. 35369, 2016.
[54] M. Minbashi, A. Ghobadi, E. Yazdani, A. A. Kordbacheh and A. Hajjiah, "Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects," Scientific Reports, vol. 10, p. 21813, 2020.
[55] M. Gansukh, Z. Li, M. E. Rodriguez, S. Engberg, F. M. A. Martinho, S. L. Mariño, E. Stamate, J. Schou, O. Hansen and S. Canulescu, "Energy band alignment at the heterointerface between CdS and Ag alloyed CZTS," Scientific Reports, vol. 10, p. 18388, 2020.
[56] S. Engberg, F. Martinho, M. Gansukh, A. Protti, R. Küngas, E. Stamate, O. Hansen, S. Canulescu and J. Schou, "Spin coated Cu2ZnSnS4 solar cells: A study on the transformation from ink to film," Scientific Reports, vol. 10, p. 20749, 2020.
[57] R. Chen, J. Fan, C. Liu, X. Zhang, Y. Shen and Y. Mai, "Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure," Scientific Reports |, vol. 6, p. 35300, 2016.
[58] F. Liu, J. Huang, K. Sun, C. Yan, Y. Shen, J. Park, A. Pu, F. Zhou, X. Liu, J. A. Stride, M. A. Green and X. Hao, "Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact," NPG Asia Materials, vol. 9, p. e401, 2017.
[59] E. Ha, W. Liu, L. Wang, H.-W. Man, L. Hu, S. C. E. Tsang, C. T.-L. Chan, W.-M. Kwok, L. Y. S. Lee and K.-Y. Wong, "Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation," Scientific Reports, vol. 7, p. 39411, 2017.
[60] G. K. Dalapati, S. Zhuk, S. Masudy-Panah, A. Kushwaha, H. L. Seng, V. Chellappan, V. Suresh, Z. Su, S. K. Batabyal, C. C. Tan, A. Guchhait, L. H. Wong, T. K. S. Wong and S. Tripathy, "Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells," Scientific Reports, vol. 7, p. 1350, 2017.
[61] F.-I. Lai, J.-F. Yang, W.-X. Liao and S.-Y. Kuo, "Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays," SciEntific REPOrtS | , vol. 7, p. 14927, 2017.
[62] Z. Wang, R. Gauvin and G. P. Demopoulos, "Nanostructural and photo-electrochemicalproperties of solution spin-coated Cu2ZnSnS4–TiO2 nanorod forest films with an improved photovoltaic performance," Nanoscale, vol. 9, p. 7650, 2017.
[63] X. Fu, Z. Ji, C. Li and Z. Zhou, "Electrochemical method for synthesis of Cu2ZnSnS4 Nanorod/TiO2 nanotube arrays hybrid structure with enhanced photoelectrochemical properties," Journal of Alloys and Compounds, vol. 688A, pp. 1013-1018, 2016.
[64] P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," Journal of Applied Physics, vol. 62, p. 243, 1987.
[65] A. W. Smith and A. Rohatgi , "Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells," Solar Energy Materials and Solar Cells , vol. 29 , pp. 37--49, 1993.
[66] K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj and J. Yi, "Texturing of large area multi-crystalline silicon wafers through differentchemical approaches for solar cell fabrication," Solar Energy Materials & Solar Cells, vol. 92, p. 960–968, 2008.
[67] G. Nava, R. Osellame, R. Ramponi and K. C. Vishnubhatla, "Scaling of black silicon processing time by high repetition rate femtosecond lasers," OPTICAL MATERIALS EXPRESS 613, vol. 3, pp. 612-623, 2013.
[68] D. Shir, J. Yoon, D. Chanda, J.-H. Ryu and J. A. Rogers, "Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement," Nano Lett. , vol. 10, p. 3041–3046, 2010.
[69] K. J. Yu, L. Gao, J. S. Park, Y. R. Lee, C. J. Corcoran, R. G. Nuzzo, D. Chanda and J. A. Rogers, "Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells," Adv. Energy Mater., vol. 3, p. 1401–1406, 2013.
[70] M. C. Putnam, D. B. Turner-Evans, M. D. Kelzenberg, S. W. Boettcher, N. S. Lewis and H. A. Atwater, "10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth," Appl. Phys. Lett., vol. 95, p. 163116, 2009.
[71] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, "Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications," NATURE MATERIALS, vol. 9, pp. 239-244, 2010.
[72] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, vol. 449, pp. 885-889, 2007.
[73] P. Spinelli, M. A. Verschuuren and A. Polman, "Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators," Nature Communications | , vol. 3, p. 692, 2012.
[74] W. Wang, S. Wu, R. J. Knize, K. Reinhardt, Y. Lu and S. Chen, "Enhanced photon absorption and carrier generation in nanowire solar cells," OPTICS EXPRESS 3738, vol. 20, no. 4, p. 3733, 2012.
[75] F. Ringleb, S. Andree, B. Heidmann, J. Bonse, K. Eylers, O. Ernst, T. Boeck, M. Schmid and J. Krüger, "Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics," Beilstein J. Nanotechnol. , vol. 9, p. 3025–3038, 2018.
[76] N. Rezael, O. Isabella, Z. Vroon and M. Zeman, "Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study," Optics Express A39, vol. 26, no. 2, 2018.
[77] C. Heine and R. H. Morf, "Submicrometer gratings for solar energy applications," APPLIED OPTICS @ Vol., vol. 34, pp. 2476-2482, 1995.
[78] D. C. Johnson, I. Ballard, K. W. Barnham, D. B. Bishnell, J. P. Connolly, M. C. Lynch, T. N. Tibbits, N. J. Ekins-Daukes, M. Mazzer, R. Airey, G. Hill and J. S. Roberts, "Advances in Bragg stack quantum well solar cells," Solar Energy Materials & Solar Cells, vol. 87, p. 169–179, 2005.
[79] F. Llopis and I. Tobıas, "The role of rear surface in thin silicon solar cells," Solar Energy Materials & Solar Cells, vol. 87, p. 481–492, 2005.
[80] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos and L. C. Kimerling, "Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector," Appl. Phys. Lett., vol. 93, p. 221105, 2008.
[81] J. Krc, M. Sever, A. Campa, Z. Lokar, B. Lipovsek and M. Topic, "Optical confinement in chalcopyrite based solar cells," Thin Solid Films, vol. 633, p. 193–201, 2017.
[82] F. Mollica, "Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative back-contacts.," 2016.
[83] K. Hadobas, S. Kirsch, A. Carl, M. Acet and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology, vol. 11, p. 161, 2000.
[84] C.-H. Sun, P. Jiang and B. Jiang, "Broadband moth-eye antireflection coatings on silicon," Appl. Phys. Lett., vol. 92, p. 061112, 2008.
[85] J. Taniguchi, E. Yamauchi and Y. Nemoto, "Fabrication of antireflection structures on glassy carbon surfaces using electron beam lithography and oxygen dry etching," Journal of Physics: Conference Series, vol. 106, p. 012011, 2008.
[86] F. KELLER, M. S. HUNTER and D. L. ROBINSON, "Structural Features of Oxide Coatings on Aluminum," J. Electrochem. Soc. , vol. 100 , p. 411, 1953 .
[87] D. Crouse, Y.-H. Lo, A. E. Miller and M. Crouse, "Self-ordered pore structure of anodized aluminum on silicon and pattern transfer," Appl. Phys. Lett., vol. 76, p. 49, 2000.
[88] H.-P. Wang, K.-T. Tsai, K.-Y. Lai, T.-C. Wei, Y.-L. Wang and J.-H. He, "Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting," OPTICS EXPRESS , vol. A94, p. 20, 2012.
[89] S.-H. Chen, S.-H. Chan, C.-K. Chen, S.-Z. Tseng and C.-H. Hsu, "Atomic layer deposition of aluminum-doped zinc oxide films for the light harvesting enhancement of a nanostructured silicon solar cell," J. Vac. Sci. Technol. , vol. A 31, p. 01A125 , 2013.
[90] A. Abu-Shamleh, H. Alzubi and A. Alajlouni, "Optimization of antireflective coatings with nanostructured TiO2 for GaAs solar cells," Photonics and Nanostructures - Fundamentals and Applications , vol. 43 , p. 100862, 2021.
[91] Z. Lv, L. Liu, X. Zhangyang, Y. Sun, F. Lu and J. Tian, "Analytic formulas and numerical simulations for non-uniform AlxGa1-xN nanostructure on electro-optical properties for UV Photodetectors," Optics Communications (, p. 126799, 2021).
[92] X. Shen, S. Wang, H. Zhou, K. Tuokedaerhan and Y. Chen, "Improving thin film solar cells performance via designing moth-eye-like nanostructure arrays," Results in Physics , vol. 20 , p. 103713, 2021.
[93] L. McKeever and M. D. Vece, "Possible deviations from AM1.5 illumination in coherent light simulations on plasmonic nanostructures in Perovskite solar cells," Solar Energy , vol. 181 , p. 452–455, 2019.
[94] K. Q. Le, "Engineered metallic nanostructures for dye fluorescence enhancement: Experiment and simulation," Physica B: Condensed Matter , vol. 560 , p. 140–145, 2019.
[95] G. Banerjee, S. Chowdhury and S. Ghosh, "Optical properties of nanorod rich copper zinc tin sulphide grown by chemical bath," AIP Conference Proceedings, vol. 2072, p. 020007, 2019.
[96] J. Boroumand, S. Das, A. Vázquez-Guardado, D. Franklin and D. Chanda, "Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells," Scientific Reports, vol. 6, p. 31013, 2016.
[97] ExxonMobil, "2012 The Outlook for Energy: A View to 2040," ExxonMobil, Texas, 2012.
[98] J.-O. Jeon, K. D. Lee, L. S. Oh, S.-W. Seo, D.-K. Lee, H. Kim, J.-h. Jeong, M. J. Ko, B. Kim, H. J. Son and J. Y. Kim, "Highly Efficient Copper–Zinc–Tin–Selenide (CZTSe) SolarCells by Electrodeposition," ChemSusChem , vol. 7, p. 1073 – 1077, 2014 .