簡易檢索 / 詳目顯示

研究生: 楊欣逸
Hsin-Yi Yang
論文名稱: 先進金氧半電晶體之高頻雜訊分析
Analysis of High Frequency Noise in Advanced MOS Transistors
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 67
中文關鍵詞: 金氧半場效電晶體之高頻雜訊雜訊參數waffle佈局
外文關鍵詞: MOSFET noise, noise parameters, waffle layout
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管電子產業技術的不斷進步,金氧半場效電晶體仍為主流應用,而每一代新製程使得通道長度一再縮小,除了提高元件的操作頻率外,高頻雜訊的分析也更趨複雜。現今已有相當多論文探討有關次微米元件的高頻雜訊,所提出的各種現象解釋,公式,和模型等雖有差異,其實多依循相似的原理再進行不同的推導運算而已。另外從次微米元件的雜訊來源來作分析,以往較為次要的來源亦因操作頻率上升而變得不可忽視,在低雜訊電路應用中,該如何降低其高頻雜訊已成為相當重要的課題。
    整篇論文裡,我們主要著重在量測與分析高頻雜訊參數。從0.18與0.13微米的多指狀金氧半場效電晶體開始分析起,一方面可以驗證論文的數據與模型,另一方面也發覺雜訊參數之一的noise resistance與整體電路雜訊的高度相關性。而在比較N型與P型兩種電晶體的雜訊效能後,從中得知其特性的相似與差異處,這也提供了電路設計者選擇元件時的考量。之後我們參考論文設計了預期可以降低高頻雜訊的waffle佈局電晶體,將其直流與高頻特性進行完整的分析,發現其特殊佈局確實可以降低電晶體通道的熱雜訊,只要能再配合閘極電阻的降低,將能夠明顯地改善高頻的雜訊表現。


    With technology progressing continuously, MOSFETs are utilized extensively in high frequency applications. As the device size scaling down, the analysis of high frequency noise becomes more complicated than that in the conventional long channel devices. Many publications have studied the excess thermal noise and derived the analytical equations from different models. Although the final proposed equations are different, some similar effects such as velocity saturation, channel length modulation and so forth are adopted.
    In this study, we set a simple procedure to cope with the experimental data and verify those equations by using standard 0.13-□m and 0.18-□m devices, inclusive of n- and p-channel MOSFETs. Furthermore, we focus on the analysis of the four noise parameters, and observe the similarities and differences of these parameters as functions of both the frequency and bias voltage. Such as biasing adequate voltage corresponding to different devices can achieve their optimized performance. At last, the waffle-type layout MOSFET which is expected to possess lower high frequency noise has been designed. We investigate the high frequency noise characteristics with different device layouts. The waffle configuration reduces its channel thermal noise compared with multi-finger type about 30-47% at different frequencies and bias voltages. The noise resistance is also decreased by 9%. Moreover, the gates of waffle device can be connected on both sides to reduce gate resistance to improve its noise performance.

    Table of Contents Abstract i Acknowledgement iii List of Tables vi List of Figures vii CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Overview 2 CHAPTER 2 FUNDAMENTALS OF THERMAL NOISE IN MOSFETS 3 2.1 Introduction to thermal noise 3 2.2 Thermal noise in deep submicron MOSFETs 4 2.2.1 Velocity saturation 5 2.2.2 Carrier heating effect 6 2.2.3 Channel length modulation 6 2.2.4 Gate resistance noise 7 2.2.5 Substrate noise 8 2.3 Analytical noise model and equations 9 CHAPTER 3 NOISE DE-EMBEDDING. 13 3.1 Correlation matrix of the noisy two-port network 13 3.1.1 Fundamentals of the correlation matrix 14 3.1.2 Properties of the correlation matrix 15 3.1.3 Correlation matrix relative to noise parameters 16 3.2 Simple flow of noise de-embedding 18 3.3 Comparison between pre- and post-de-embedded data 20 3.4 Summary 23 CHAPTER 4 ANALYSIS OF MULTI-FINGER MOSFETS 24 4.1 Specification of devices under test and experimental procedure 24 4.2 Noise parameters of 0.13-□m and 0.18-□m MOSFETs 26 4.2.1 Analysis of multi-finger NMOS and PMOS by 0.18-□m technology 26 4.2.2 Analysis of multi-finger NMOS and PMOS by 0.13-□m technology 31 4.2.3 Comparison between multi-finger NMOS and PMOS 35 4.3 Simulation of noise parameters with analytical equations 38 4.4 Summary 42 CHAPTER 5 ANALYSIS OF WAFFLE MOSFETS 43 5.1 Design and layout of waffle MOSFETs 43 5.2 DC performance 46 5.3 High frequency noise performance 50 5.3.1 The drain current spectral density 51 5.3.2 Experimental noise parameters 53 5.4 Summary 60 CHAPTER 6 CONCLUSIONS 61 6.1 Summary 61 6.2 Recommendations for future work 63 BIBLIOGRAPHY 64 List of Tables Table 1. Specifications of 0.18-□m devices 25 Table 2. Specifications of 0.13-□m devices 25 Table 3. Specifications of 60 □m waffle devices 47 List of Figures Fig. 2.1 Cross section of a MOSFET channel divided into a gradual channel region (I) and a velocity saturation region (II) [3] 7 Fig. 2.2 (a) Equivalent compact circuit model of MOSFET with thermal noise sources, where SiG and SiD represent the induced gate and drain current noise, and the other noise current source 4kTRg is generated from gate resistance. (b) The noise free compact circuit model of MOSFET with input referred noise voltage and current [19] 10 Fig. 3.1 Schematic diagrams of noise equivalent networks: (a) impedance representation; (b) chain representation 14 Fig. 3.2 Noise model for calculating the amplifier noise figure 17 Fig. 3.3 Noise parameters versus frequency for the 0.13-□m NMOS at VGS = 0.5, 0.85 V, and VDS = 1 V: (a) minimum noise figure NFmin, (b) noise resistance Rn, (c) magnitude of the optimum source reflection coefficient |Гopt|, (d) phase of the optimum source reflection coefficient∠Гopt 21 Fig. 3.4 Noise parameters versus frequency for the 0.13-□m PMOS at VGS = -0.5, -0.85 V, and VDS = -1 V: (a) minimum noise figure NFmin, (b) noise resistance Rn, (c) magnitude of the optimum source reflection coefficient |Гopt|, (d) phase of the optimum source reflection coefficient∠Гopt 22 Fig. 4.1 Noise parameters versus frequency for the 0.18-□m NMOS at VGS = 0.7, 1.1, 1.5 V, and VDS = 1.8 V: (a) minimum noise figure NFmin, (b) noise resistance Rn, (c) magnitude of the optimum source reflection coefficient |Гopt|, (d) phase of the optimum source reflection coefficient ∠Гopt, (e) NF50. Graphs on the left side whose total width equal 80 □m, and 96 □m devices are shown on the right side 28 Fig. 4.2 Noise parameters versus frequency for the 0.18-□m PMOS at VGS = -0.7, -1.1, -1.5 V, and VDS = -1.8 V: (a) minimum noise figure NFmin, (b) noise resistance Rn, (c) magnitude of the optimum source reflection coefficient |Гopt|, (d) phase of the optimum source reflection coefficient ∠Гopt, (e) NF50. Graphs on the left side whose total width equal 80 □m, and 96 □m devices are shown on the right side 30 Fig. 4.3 Noise parameters versus frequency for two parallel NMOS in 0.13-□m generation at VGS = 0.5, 0.7, 0.85 V, and VDS = 1 V: (a) NFmin, (b) Rn, (c) |Гopt|, (d)∠Гopt, (e) NF50 33 Fig. 4.4 Noise parameters versus frequency for two parallel PMOS in 0.13-□m generation at VGS = -0.5, -0.7, -0.85 V, and VDS = -1 V: (a) NFmin, (b) Rn, (c) |Гopt|, (d)∠Гopt, (e) NF50 34 Fig. 4.5 Noise parameters versus |VGS| for the 0.18-□m NMOS and PMOS whose total width are 80 □m at VDS = 1.8 V: (a) NFmin, (b) Rn, (c) |Гopt|, (d)∠Гopt, (e) NF50. Graphs on the left side are measured at 4 GHz, and at 16 GHz on the right side 36 Fig. 4.6 Noise parameters versus frequency for the 0.18-□m NMOS whose total width is 80 □m at VGS = 1 V, VDS = 1.8 V: (a) NFmin, (b) Rn, (c) |Гopt|, (d)∠Гopt, (e) NF50. “Measure” means the measurement data after de-embedding, and “Model” means the results from analytical equations with different γ value 39 Fig. 4.7 Noise parameters versus frequency for the 0.18-□m PMOS whose total width is 80 □m at VGS = -1 V, VDS = -1.8 V: (a) NFmin, (b) Rn, (c) |Гopt|, (d)∠Гopt, (e) NF50. “Measure” means the measurement data after de-embedding, and “Model” means the results from analytical equations with different γ value 40 Fig. 4.8 γ value versus |VGS| for the 0.18-□m NMOS and PMOS whose total width is 80 □m at |VDS| = 1.8 V 41 Fig. 5.1 Two kinds of unit cell configurations for n-by-n waffle MOSFETs: (a) 3-by-3, (b) 5-by-5 44 Fig. 5.2 The layouts of two kinds of 3-by-3 waffle MOSFETs: (a) 1 contact in one source/drain diffusion region, (b) 4 contacts in one source/drain diffusion region 45 Fig. 5.3 The layout of the multi-finger MOSFET provided from foundry. 45 Fig. 5.4 The DC I-V characteristics for different kinds of n-type MOSFETs biased at VGS equals 0.6, 0.8, and 1 V. “NMOS1” means the 3-by-3 waffle NMOS, “NMOS2” means the 5-by-5 waffle NMOS, and “NMOS3” means the multi-finger NMOS 47 Fig. 5.5 The comparison of DC I-V characteristics in different configurations of waffle NMOS whose total gate width are designed to 60 □m: (a) comparison between NMOS1, 2, 3, and 4. (b) comparison between NMOS1, 5, 6 48 Fig. 5.6 The layouts of different devices under test which are used to verify the STI effect originated from isolation field oxide 49 Fig. 5.7 The drain current spectral density SiD versus frequency at VGS = 1 V, and VDS = 1.8 V 52 Fig. 5.8 The drain current spectral density SiD versus VGS at frequency = 10 GHz, and VDS is fixed to 1.8 V 52 Fig. 5.9 Noise resistance Rn versus frequency at VGS = 1 V, and VDS = 1.8 V 54 Fig. 5.10 Gate resistance Rg versus frequency at VGS = 1 V, and VDS = 1.8 V 55 Fig. 5.11 Minimum noise figure NFmin versus frequency at VGS = 1 V, and VDS = 1.8 V 57 Fig. 5.12 Real part of the optimum source admittance Gopt versus frequency at VGS = 1 V, and VDS = 1.8 V 58 Fig. 5.13 Imaginary part of the optimum source admittance Bopt versus frequency at VGS = 1 V, and VDS = 1.8 V 58 Fig. 5.14 NF50, the noise figure when signal source is connected directly with 50 Ω impedance, versus frequency at VGS = 1 V, and VDS = 1.8 V 59

    [1] A. van der Ziel, Noise in Solid State Devices and Circuits. New York: John Wiley & Sons, 1986.

    [2] A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618–632, Mar. 2003.

    [3] C. H. Chen and M. J. Deen, “Channel noise modeling of deep submicron MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1484-1487, Aug. 2002.

    [4] K. Han, H. Shin and K. Lee, “Analytical drain thermal noise current model valid for deep submicron MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 261-269, Feb. 2004.

    [5] A. S. Roy and C. C. Enz, “Compact modeling of thermal noise in the MOS transistor,” IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 611-614, Apr. 2005.

    [6] M. J. Deen, C. H. Chen, S. Asgaran, G. A. Rezvani, J. Tao, and Y. Kiyota, “High-frequency noise of modern MOSFETs: compact modeling and measurement issues,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2062-2081, Sept. 2006.

    [7] Y. Cheng, C. H. Chen, M. Matloubian, and M. J. Deen, “High-frequency small signal AC and noise modeling of MOSFETs for RF IC design,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 400-408, Mar. 2002.

    [8] R. P. Jindal, “Compact noise models for MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2051-2061, Sept. 2006.

    [9] A. S. Porret and C. C. Enz, “Non-quasi-static (NQS) thermal noise modeling of the
    MOS transistor,” IEE Proc. -Circuits Devices Syst., vol. 151, no. 2, pp. 155-166, Apr. 2004.

    [10] S. Nuttinck, A. J. Scholten, L. F. Tiemeijer, F. Cubaynes, C. Dachs, C. Detcheverry,
    and E. A. Hijzen, “Impact of downscaling and poly-gate depletion on the RF noise parameters of advanced nMOS transistors,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 153–157, Jan. 2006.

    [11] J. B. Johnson, “Thermal agitation of electricity in conductors,” Physical Review, vol.
    32, issue 1, pp. 97–109, July 1928.

    [12] T. Manku, “Microwave CMOS—device physics and design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 726-735, Mar. 1999.

    [13] A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, R. de Kort and D. B. M. Klaassen, “Compact modeling of noise for RF CMOS circuit design,” IEE Proc. -Circuits Devices Syst., vol. 151, no. 2, pp. 167-174, Apr. 2004.

    [14] K. Han, J. Gil, S. S. Song, J. Han, H. Shin, C. K. Kim, and K. Lee, “Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005.

    [15] C. G. Sodini, P. K. Ko, and J. L. Moll, “The effect of high fields on MOS device and
    circuit performance,” IEEE Trans. Electron Devices, vol. ED-31, pp. 1386–1393, Oct.
    1984.

    [16] D. Gasquet, “Noise temperature and hot–carrier thermal conductivity in
    semiconductors,” Ph.D., Univ. Montpellier II, Montpellier, France, 1995.

    [17] C. Enz and Y. Cheng, “MOS transistor modeling for RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 186–201, Feb. 2000.

    [18] H. Wang, R. Zeng, and X. Li, “An experimental study of carrier heating on channel noise in deep-submicrometer NMOSFETs via body bias,” IEEE Trans. Microwave Theory Tech, vol. 53, pp. 564–570, Feb. 2005.

    [19] S. Asgaran, M. J. Deen, and C.-H. Chen, “Analytical modeling of MOSFET’s channel noise and noise parameters,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2109–2114, Dec. 2004.

    [20] H. Hillbrand and P. H. Russer, “An efficient method for computer aided noise analysis of linear amplifier networks,” IEEE Trans. Circuits Syst., vol. CAS-23, no. 4, pp. 235–238, Apr. 1976.

    [21] C. Enz, “An MOS transistor model for RF IC design valid in all regions of operation,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 342–359, Jan. 2002.

    [22] C. H. Chen and M. J. Deen, “High frequency noise of MOSFETs I modeling,” Solid-State Electronics, vol. 42, no. 11, pp. 2069-2081, May 1998.

    [23] S. Asgaran, M. J. Deen, and C.-H. Chen, “An analytical method to determine
    MOSFET’s high frequency noise parameters from 50-Ω noise figure measurements,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006, pp. 301–304.

    [24] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice Hall, 1996.

    [25] T. E. Kolding. “A four-step method for de-embedding gigahertz on-wafer CMOS measurements,” IEEE Trans. Electronic Devices, vol. 47, no. 4, pp. 734–739, Apr. 2000.

    [26] M. J. Deen and C. H. Chen, “The impact of noise parameter de-embedding on high-frequency noise modeling of MOSFETs,” in Proc. IEEE Int. Conf. on Microelectronic Test Structures, vol. 12, pp. 34-39, Mar. 1999.

    [27] R. Navid and R. W. Dutton, “The physical phenomena responsible for excess noise in short-channel MOS devices,” in Int. Simulation of Semiconductor Processes and Devices Conf., 2002, pp. 75–78.

    [28] S. V. Kishore, G. Chang, G. Asmanis, C. Hull, and F. Stubbe, “Substrate-induced high-frequency noise in deep sub-micron MOSFETs for RF applications,” in 1999 Proc. CICC, May 1999, pp. 365–368.

    [29] T. Manku, M. Obrecht, and Y. Lin, “RF simulations and physics of the channel noise parameters within MOS transistors,” in 1999 Proc. CICC, May 1999, pp. 369–372.

    [30] H. L. Kao, A. Chin, C. C. Liao, C. C. Chen, S. P. McAlister, and C. C. Chi, “Electrical-stress effects and device modeling of 0.18-□m RF MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 636–642, Apr. 2006.

    [31] S. Lam, W. H. Ki, K. C. Kwok, and M. Chan, “Realization of compact MOSFET structure by waffle-layout,” in Proc. 31st IEEE European Solid-State Device Research Conf., Sept. 2001, pp. 119-122.

    [32] W. Wu, S. Lam, and M. Chan, “Effects of layout methods of RF CMOS on noise performance,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2753–2759, Dec. 2005.

    [33] S. Q. Malik and R. L. Geiger, “Minimization of area in low-resistance MOS switches,” in Proc. 43rd IEEE Midwest Symp. on Circuits and Systems , Aug. 2000, vol. 3, pp. 1392-1395.

    [34] S. R. Vemuru, “Layout comparison of MOSFETs with large W/L ratios,” IET Electronics Lett., vol. 28, issue 25, pp. 2327–2329, Dec. 1992.

    [35] W. Wu, S. Lam, P. K. Ko, and M. Chan, “High frequency characteristics of MOSFETs with compact waffle layout,” in Proc. 34th IEEE European Solid-State Device Research Conf., Sept. 2004, vol. 3, pp. 381-384.

    [36] C. Y. Chan, J. D. Jin, Y. S. Lin, and S. S. H. Hsu, “STI effect on flicker noise in 0.13-□m RF NMOS,” in Proc. 36th IEEE European Solid-State Device Research Conf., Sept. 2006, pp. 101-104.

    [37] M. C. King, M. T. Yang, C. W. Kuo, Y. Chang, and A. Chin, “RF noise scaling trend of MOSFETs from 0.5 □m to 0.13 □m technology nodes,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, vol. 1, pp. 9–12.

    [38] H. Fukui, “Optimal noise figure of microwave GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. ED-26, no. 7, pp. 1032–1037, Jul. 1979.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE