研究生: |
郭家豪 Guo, Chia-Hao |
---|---|
論文名稱: |
取樣方式對時域重疊關聯成像之研究 A study of impacts of sampling footprint on time-domain ptychography |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: |
陳彥宏
項維巍 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 脈衝量測 、重疊關聯成像 、非線性光學 |
外文關鍵詞: | Ultrafast Measurement, Ptychography, Ultrafast Nonlinear Optics |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統的各種脈衝量測技術中,如:疊代傅立葉轉換與主成分廣義投影演算法(principal components generalized projection algorithm (PCGPA)),因顧慮到群速度不相匹配或低訊噪比等問題,因此只適合用於重建飛秒等級左右的脈衝,無法用於更短的脈衝重建。在論文中,我們利用時域上的重疊關聯成像技術便能解決之前量測技術的難題,因為此方法能以不完整的時頻譜重建出原本的脈衝。換句話說,晶體厚度(訊噪比)與群速度匹配的權衡問題已經不存在。而此優點也界定了時域與空間域重疊關聯成像的差別。此論文首次在模擬與實驗上找出脈衝寬度與所需的最小不完整時頻譜間的關係,兩者的變化呈現正相關。更重要的是,我們進一步證明只要能取得在時頻譜中的基頻頻譜中心頻率的二倍頻頻率與延遲軸的中心點,即可成功還原完整的脈衝資訊。
Conventional ultrashort optical measurement techniques such as iterative Fourier transform and principal components generalized projection algorithm (PCGPA) are suitable to characterize femtosecond pulses rather than attosecond pulses because they often suffer from several problems such as group velocity mismatch (GVM) or poor signal-to-noise ratio (SNR). Time-domain ptychography (TDP) which allowing the down-sampling and truncation in frequency and delay grid can easily eliminate these drawbacks. In other words, a thick crystal can be used to get good SNR and relax the consideration to GVM. Moreover, this feature also indicates that there is no analogy between TDP and spatial-domain ptychography. In this work, we first numerically and experimentally found that the pulse shape is strongly related to the required minimum widow size. There is a positive correlation between the required size and the test pulse duration. More importantly, a second-harmonic spectral center twice of the fundamental frequency center (Ω=2ωc) and zero delay (τ=0) is both essential to obtain the good quality reconstruction.
[1] P. B. Corkum, “Plasma perspective in strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994-1997 (1993).
[2] A. Sommer, Ultrafast strong field dynamics in dielectrics (2015).
[3] L. Belshaw, F. Calegari, M. J. Duffy, A. Trabattoni, L. Poletto, M. Nisoli and J. B. Greenwood, "Ultrafast electron dynamics in an amino acid measured by attosecond pulses," Conference on Lasers Electro-Optics Europe International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, May 12-16 (2013).
[4] M. Nisoli, P. Decleva, F. Calegari, A. Palacios and F. Mart`ın, “Attosecond electron dynamics in molecules,” Chem. Rev. 117, 10760–10825 (2017).
[5] F. Krausz and M. Ivanov, “Attosecond phsyics,” Rev. Mod. Phys. 81, 163-234 (2009).
[6] R. Trebino, Frequency‐Resolved Optical Gating: The Measurement of
Ultrashort Laser Pulses (Kluwer Acadamic Publisher, Boston, MA, 2000).
[7] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis and I. A. Walmsley, “Characterization of sub‐6‐fs optical pulses with spectral phase interferometry for direct electric‐field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[8] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller and P. Agostini, “Observation of a Train of Attosecond Pulses from High Harmonic Generation, ” Science 292, 1689-1692 (2001).
[9] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher and F. Krausz, “ Attosecond metrology, ” Nature 414, 509–13 (2001).
[10] Andrew M. Weiner, “Effect of Group Velocity Mismatch on the Measurement of Ultrashort Optical Pulses via Second Harmonic Generation,” IEEE J. Quantum Electron 19, 1276-1283 (1983).
[11] L. Cattaneo, J. Vos, M. Lucchini, L. Gallmann, C.Cirelli and U. Keller, “Comparison of attosecond streaking and RABBITT,” Opt. Express 24, 29060-29076 (2016).
[12] J.N. Clark, X. Huang, R. Harder and I. K. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat. Commun. 3, 993 (2012).
[13] Martin Dierolf, Oliver Bunk, Søren Kynde, Pierre Thibault, Ian Johnson, Andreas Menzel, Konstantins Jefimovs, Christian David, Othmar Marti and Franz Pfeiffer, “Ptychography and lensless X-ray imaging,” Europhysics News 39, 22-24 (2008).
[14] W. Hoppe, “Beugung im inhomogenen Primärstrahlwellenfeld,” Acta Crystallogr. Sect. A 25, 495 (1969).
[15] R. Hegerl and W. Hoppe, “Berichte der Bunsen-Gesellschaft,” Physikalische Chemie 74 1148–1154 (1970).
[16] J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imag. Elect. Phys. 150, 87–184 (2008).
[17] J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. London A 339, 521 (1992).
[18] P. D. Nellist, B. C. McCallum and J. M. Rodenburg, “Resolution beyond the ‘information limit’ in transmission electron microscopy,” Nature 374, 630-632(1995).
[19] H. N. Chapman, “Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution,” Ultramicroscopy 66, 153-172 (1996).
[20] Youssef S. G. Nashed, David J. Vine, Tom Peterka, Junjing Deng, Rob Ross and Chris Jacobsen, “Parallel ptychographic reconstruction, ” Opt. Express 22, 32082-32097 (2014).
[21] H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[22] J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[23] J. M. Rodenburg, A. C. Hurst and A. G. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[24] Dirk-Mathys Spangenberg, Time domain ptychography (Doctoral dissertation, Stellenbosch University) (2015).
[25] J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, I. Johnson, “Hard-X-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007).
[26] Andrew M. Maiden and John M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[27] Natalja Strelnikova, Nora Sauter, Manuel Guizar-Sicairos, Michael Göllner, Ana Diaz, Petrina Delivani, Mariola Chacón, Iva M. Tolić, Vasily Zaburdaev and Thomas Pfohl. “Live cell X-ray imaging of autophagic vacuoles formation and chromatin dynamics in fission yeast,” Scientific Reports 7, 13775 (2017).
[28] S. H. Shahmoradian, E. H. R. Tsai, A. Diaz, M. Guizar-Sicairos, J. Raabe, L. Spycher, M. Britschgi, A. Ruf, H. Stahlberg and M. Holler, “Three-Dimensional Imaging of Biological Tissue by Cryo X-Ray Ptychography,” Scientific Reports 7, 6291 (2017).
[29] V. Chamard, M. Allain, P. Godard, A. Talneau, G. Patriarche and M. Burghammer, “Strain in a silicon-on-insulator nanostructure revealed by 3D x-ray Bragg ptychography,” Scientific Reports 5, 9827 (2015).
[30] Mirko Holler, Manuel Guizar-Sicairos, Esther H. R. Tsai, Roberto Dinapoli, Elisabeth Müller, Oliver Bunk, Jörg Raabe and Gabriel Aeppli, “High-resolution non-destructive three-dimensional imaging of integrated circuits, ” Nature 543, 402-406 (2017)
[31] Dirk Spangenberg, Pieter Neethling, Erich Rohwer, Michael H. Br¨ugmann and Thomas Feurer, “Time-domain ptychography, ” Phys. Rev. A 91, 021803 (2015).
[32] D. Spangenberg,1 E. Rohwer,1 M. H. Brügmann, and T. Feurer, “Ptychographic ultrafast pulse reconstruction, ” Opt. Lett. 40, 1002-1005 (2015).
[33] P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3, 1320-1330 (2016).
[34] N. C. Becker, F. Eilenberger and T. Pertsch, "Pulse Retrieval from Cropped FROG Traces," Conference on Lasers & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, USA, June 25-29 (2017).
[35] T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J.P. Marangos and J.W.G. Tisch, "Near single-cycle pulse characterization with time-domain ptychography," Conference on Lasers & Electro Optics, San Jose, California, USA, May 13-18 (2017).
[36] Matteo Lucchini, Giacinto D Lucarelli, Mario Murari, Andrea Trabattoni, Nicola Fabris, Fabio Frassetto, Sandro De Silvestri, Luca Poletto and Mauro Nisoli, “Few-femtosecond extreme-ultraviolet pulses fully reconstructed by a ptychographic technique,” Opt. Express 26, 6771-6784 (2018).
[37] Daniel J. Kane, “Principal components generalized projections: a review [Invited],” J. Opt. Soc. Am. B 25, A121-132 (2008).
[38] J. Hyyti, E. Escoto, G. Steinmeyer and T. Witting, “ Interferometric time-domain ptychography for ultrafast pulse characterization,” Opt. Lett. 42, 2185-2188 (2017).
[39] M. Lucchini, M. H. Br¨ugmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. Express 23, 29502-29513 (2015).
[40] A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[41] D. J. Kane and R. Trebino, “Single-Shot Measurement of the Intensity and Phase of an Arbitrary Ultrashort Pulse By Using Frequency-Resolved Optical Gating,” Opt. Lett. 18, 823-5 (1993).
[42] R. Trebino and D. J. Kane, “Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses: Frequency-Resolved Optical Gating,” J. Opt. Soc. Amer. A 10,1101-11 (1993).
[43] G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino and I. P. Christov, “Ultrashort Optical Waveform Measurements Using Frequency-Resolved Optical Gating,” Opt. Lett. 20, 743-745 (1995).
[44] Justin Ratner, Günter Steinmeyer, Tsz Chun Wong, Randy Bartels and Rick Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874-2876 (2012).
[45] G. Taft, A. Rundquist, M. M. Murane, I. P. Christov, H. C. Kapteyn, K. W. Delong, D. N. Fittingoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino “Measurement of 10-fs Laser Pulse,” IEEE J. Quantum Electron 2, 575-85 (1996).
[46] D. Keusters, H. S. Tan, P. O’Shea, E. Zeek, R. Trebino and W. S. Warren, “Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components,” J. Opt. Soc. Am. B 20, 2226-2237 (2003).
[47] K. W. Delong, C. L. Ladera, R. Trebino, B. Kohler and K. R. Wilson, “Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating,” Opt. Lett. 20, 486-488(1995).
[48] Xudong Xu, Wanguo Zheng and Liejia Qian, “Characteristics of Second Harmonic Generation with a Short-Pulse Laser in Nonlinear Photonic Crystals,” J. Korean Phys. Soc. 43, 501-506 (2003).
[49] O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481-487 (2008).
[50] J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795-4797 (2004).
[51] Dirk-Mathys Spangenberg, Michael Br¨ugmann, Erich Rohwer, and Thomas Feurer, “All optical implementation of a time-domain ptychographic pulse reconstruction setup” Applied Optics 55, 5008-5013 (2016).
[52] Travis L. Poole, Andrew Curtis, Johan O. A. Robertsson and Dirk-Jan van Manen, “Deconvolution imaging conditions and cross-talk suppression,” GEOPHYSICS 75, W1-W12 (2010).
[53] Anish Deba, Gautam Sarkara, Amitava Biswasb and Priyaranjan Mandal, “Numerical instability of deconvolution operation via block pulse functions,” J. Franklin Inst. 345 319-327 (2008).
[54] J. Gagnon, E. Goulielmakis and V. S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25–32 (2008).
[55] Martin K¨ohl, A. A. Minkevich and Tilo Baumbach, “Improved success rate and stability for phase retrieval by including randomized overrelaxation in the hybrid input output algorithm,” Opt. Express 20, 17093-17106 (2012).
[55] Heng-Jia Liu, An-Chia Hsu, Chung-Lo Chen and Shang-Da Yang, "Spectrally sampled second-harmonic interferometric autocorrelation for 3.5 fs pulse measurement," Conference on Lasers & Electro Optics, San Jose, California, USA, May 13-18 (2018).
[56] Chia-Lun Tsai, F. Meyer, A. Omar, Yicheng Wang, An-Yuan Liang, Chih-Hsuan Lu and Shang-Da Yang, Clara J. Saraceno, "27-fs, 166-MW pulses at 98 W average power from highly efficient thin-disk oscillator driven nonlinear compressor," Conference on Lasers & Electro Optics, San Jose, California, USA, May 5-10 (2019).
[57] Chih-hsuan Lu, Yu-Jung Tsou, Hing-Yu Chen, Bo-Han Chen, Yu-Chen Cheng, Shang-Da Yang, Ming-Chang Chen, Chia-Chen Hsu and A.H. Kung, “Generation of intense supercontinuum in condensed media,” Optica 1, 400-406 (2014).