簡易檢索 / 詳目顯示

研究生: 盧棨彬
Chi-Pin Lu
論文名稱: 鎳金屬誘發側向結晶法製備之複晶矽薄膜其初始成長現象及機制之研究
Atomic Structure Evolution and the Mechanism for Nickel Induced Lateral Crystallization of Amorphous Silicon
指導教授: 周立人 博士
Dr. Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 43
中文關鍵詞: 鎳金屬矽化物誘發側向結晶法非晶質矽複晶矽薄膜高分辨電子顯微鏡軸向雙晶缺陷矽化鎳能量散佈光譜分析儀
外文關鍵詞: nickel metal induced lateral crystallization (Ni-MILC) method, amorphous silicon, polycrystalline silicon thin film, high resolution transmission electron microscopy (HRTEM), zone axis, micro-twins, NiSi2, Energy Dispersive Spectrometer (EDS)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以鎳金屬矽化物誘發側向結晶法結晶非晶質矽的方法來製備高品質、低溫複晶矽薄膜,近年來受到廣泛的研究。本實驗室之前的研究發現,蒸鍍上不同曲率的鎳金屬覆蓋層對於所誘發的複晶矽薄膜,無論在結晶性或結晶形態上都有著明顯的影響。在本論文中,我們利用高分辨電子顯微鏡配合能量散佈光譜分析儀來研究以鎳金屬誘發側向結晶的複晶矽薄膜,其在成長初始階段的現象及成長機制。
    首先,我們發現對於由曲率無限小(長方形)的鎳覆蓋層所誘發的複晶矽,其初始成長是呈現一個[211]的軸向(zone axis),而後轉向[110]軸向來成長延伸,且結晶矽的成長為長直狀的結晶形態﹔然而,隨著曲率的增加(圓形),複晶矽的初始軸向改為[110]方位,並且呈現樹枝狀分枝的成長形態,而其內部伴隨著許多雙晶缺陷的產生。此外,在高溫的誘發結晶溫度下,雙晶缺陷的數量顯著增加,我們推測是由於高溫下,受傳統固相結晶程序支配的關係。

    在另一方面,我們利用能量散佈光譜分析儀來研究在結晶矽前端的鎳金屬矽化物中,其鎳元素的特性X光的強度分布﹔在以鎳金屬誘發結晶法結晶非晶質矽的相關研究中,這是第一次我們可以去探討鎳原子在矽化鎳中及矽化鎳與結晶矽界面處的分佈情況。對於解決長久以來鎳原子擴散機制的問題,無疑是個好的研究開端。


    Recently, there are extensive studies on the fabrication of high quality and low process temperature polycrystalline silicon thin film by the nickel metal induced lateral crystallization (Ni-MILC) method. Our previous works indicated that, changing the curvature of nickel pattern would have serious impact on the crystallinity and quality of the induced crystallites. In this thesis, by using the high resolution transmission electron microscopy (HRTEM) and Energy Dispersive Spectrometer (EDS) analyses, we present the results of investigating the atomic structure evolution of the mechanism for nickel metal induced lateral crystallization of amorphous silicon.
    For the rectangular nickel pattern, the [211] projected crystallites was found at the initial stage of crystallization and immediately transfer to the [110] orientation. The morphology of induced crystallites was straight and parallel to each other. As increasing of the curvature, dendrite-like crystallites with [110] projection grew wildly resulted in poor crystallinity due to the creation of large quantity of micro-twins. Moreover, during high process temperature, the density of micro-twins increased rapidly due to the dominating solid phase crystallization (SPC) process.

    The Ni distribution profiles of NiSi2 precipitates in the leading front, was studied by using the EDS line scan function. It is the first time, the nickel distribution within the NiSi2 nodule and the interface area of NiSi2 / c-Si can be studied in detail. The results may provide the direct evidence to the solution of the long-time debating problem which is the nickel diffusion mechanism at the leading front upon MILC process.

    Abstract (in Chinese) ………………………………………………………………Ⅰ Abstract (in English) ………………………………………………………………Ⅱ Acknowledgments (in Chinese) ……………………………………………………Ⅲ Contents ……………………………………………………………………………Ⅳ Chapter 1 Introduction 1.1 Overview of Poly-crystalline Silicon Thin Film Technology ……………Abstract (in Chinese) ………………………………………………………………Ⅰ Abstract (in English) ………………………………………………………………Ⅱ Acknowledgments (in Chinese) ……………………………………………………Ⅲ Contents ……………………………………………………………………………Ⅳ Chapter 1 Introduction 1.1 Overview of Poly-crystalline Silicon Thin Film Technology ……………1 1.2 Solid Phase Crystallization (SPC) ………………………………………2 1.3 Excimer Laser Crystallization (ELC) ………………………………………3 1.4 Metal Induced Crystallization (MIC) and Metal Induced Lateral Crystallization (MILC) ……………………………………………4 Chapter 2 Motivation 2.1 The Mechanism of Nickel Metal Induced Lateral Crystallization (Ni-MILC) …………………………………………………7 2.2 The Curvature Effect of Nickel Pattern on MILC process …………………8 2.3 The Atomic Structure Evolution of Nickel-patterned MILC Process ………9 Chapter 3 Experimental Procedures 3.1 Bare Silicon Wafer Cleaning ……………………………………………10 3.2 Screen Thermal Oxidation ………………………………………………10 3.3 Amorphous Silicon Thin Film Deposition ……………………………10 3.4 Pattern Transfer Process …………………………………………………11 3.5 Thin Metal Film Deposition ………………………………………………12 3.6 Lift Off Process ……………………………………………………………12 3.7 Thermal Annealing ………………………………………………………12 3.8 Optical Microscopy Images Analyses ……………………………………12 3.9 Energy Dispersive Spectrometer (EDS) Analyses ………………………13 3.10 High Resolution Transmission Electron Microscopy (HRTEM) Observation ……………………………………………………………13 3.11 Preparation of Plan-view Samples for High Resolution Transmission Microscopy (HRTEM) Observation ……………………………………13 3.12 Advanced Computerized Structure Analyses ……………………………14 Chapter 4 Results and Discussions 4.1 Curvature Effect on Initial Growth of Low Temperature (520℃) Nickel Induced Lateral Crystallized Amorphous Silicon Thin Film 4.1.1 Energy Dispersive Spectrometer (EDS) Mapping Analyses ………15 4.1.2 Atomic Structure Evolution for Rectangular Nickel Pattern 4.1.2.1 High Resolution Transmission Electron Microscopy (HRTEM) Observation …………………………………………………16 4.1.2.2 Advanced Fast Fourier Transformation (FFT) and Inversed Fast Fourier Transformation (IFFT) Analyses ……………………18 4.1.3 Atomic Structure Evolution for Circular Nickel Pattern 4.1.3.1 Bright Field Transmission Electron Microscopy (BFTEM) and High Resolution Transmission Electron Microscopy (HRTEM) Observations …………………………………………………22 4.2 The Model for Curvature Effect on Initial Growth of Low Temperature (520℃) Nickel Induced Lateral Crystallized Amorphous Silicon Thin Film 4.2.1 The Relative of the Initial Growth between Metal Induced Crystallized (MIC) Region and Metal Induced Lateral Crystallized (MILC) Region………………………………………………………23 4.2.2 The Model for Initial Growth of Nickel Induced Lateral Crystallized Amorphous Silicon with Rectangular Nickel Pattern ………………24 4.2.3 The Model for Initial Growth of Nickel Induced Lateral Crystallized Amorphous Silicon with Circular Nickel Pattern ……………………25 4.2.4 The Explanation for Internal Micro-twins Formation in Nickel Induced Lateral Crystallized Silicon …………………………………………27 4.3 Bright Field Transmission Electron Microscopy (BFTEM) Observations on the High Temperature (580℃) Nickel Induced Lateral Crystallized Amorphous Silicon Thin Film ……………………………………………29 Chapter 5 Summary and Conclusions …………………………………………31 References …………………………………………………………………………32 Figure caption ………………………………………………………………………40

    Chapter 1
    [1] I. Yudasaka and H. Ohshima, “Polysilicon thin film transistors,” Mat. Res. Soc. Symp. Proc., 182 (1990).
    [2] S. Wolf and R. N. Taauber, “Silicon processing for the VLSI Era,” Lattice Press, California, 1, 161 (1986).
    [3] S. D. Brotherton, “Polycrystalline silicon thin film transistors,” Semicond. Sci. Technol., 10 (1995).
    [4] T. I. Kamins, “Hall mobility in chemical deposition polycrystalline silicon,” J. Appl. Phys., 42, 4357 (1971).
    [5] G. Baccarani, B. Ricco and G. Spadin, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., 49, 5565 (1978).
    [6] C. F. Yeh, T. Z. Yang, C. L. Chen, T. J. Chen and Y. C. Yang, “Experimental comparison of off-state current between high temperature and low temperature processed undoped channel polysilicon thin film transistors,” Jpn. J. Appl. Phys., 32, 4472 (1993).
    [7] J. Ohwada, M. Takabatake, Y. A. Ono, A. Mimura, K. Ono and N. Konish, “Peripheral circuit integrated poly-Si TFT-LCD with gray scale representation,” IEEE Trans. Electron Devices, ED-36, 1923 (1989).
    [8] A. G. Lewis, D. D. Lee and R. H. Bruce, “Polysilicon TFT circuit design and performance,” IEEE J. Solid-State Circuit, 27, 1833 (1992).
    [9] T. Morita, Y. Yamamoto, M. Itoh, H. Yoneda, Y. Yamane, S. Tsuchimoto, F. Funadda and K. Awane, “VGA driving with low temperature processed poly-Si TFTs,” IEDM Tech. Dig., 841 (1995).
    [10] M. Yuki, K. Masumo and M. Kunigita, “A full-color LCD addressed by poly-Si TFTs fabricated below 450℃,” IEEE Trans. Electron Devices, 36, 1934 (1989).
    [11] T. Tsukada, “Advances in amorphous silicon technology for LCDs,” IEDM 97-531.
    [12] C. F. Yeh, C. L. Chen, Y. C. Yang, S. S. Lin, T. Z. Yang and T. Y. Hong, “Low temperature processed poly-Si thin film transistors using solid phase crystallization and liquid phase deposition gate oxide,” Jpn. J. Appl. Phys., 33, 1798 (1994).
    [13] H. Y. Lin, C. Y. Chang, T. F. Lei, M. Liu, W. L. Yang, J. Y. Cheng, H. C. Tseng and L. P. Chen, “low temperature and low thermal budget fabrication of polycrystalline silicon thin film transistors,” IEEE Electron Devices Lett., 17, 503 (1996).
    [14] K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S. Liang and S. G. Wuu, “To suppress UV damage on the subthreshold characteristics of TFT during hydrogenation for high density TFT SRAM,” IEEE Electron Devices Lett., 18, 4 (1997).
    [15] N. D. Toung, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Electron Devices Lett., 43, 1930 (1996)
    [16] Z. Meng, M. Wang and M. Wang, “High performance low temperature metal induced unilaterally crystallized poltcrysatlline silicon thin film transistors for system on panel applications,” IEEE Trans. Electron Devices, 47, NO. 2 (2000).
    [17] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata and H. Kawakami, “high performance low temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, ED-36, 351 (1989).
    [18] M. K. Hatalis and D. W. Greve, “High performance thin film transistors in low temperature crystallized LPCVD amorphous silicon films,” IEEE Electron Devices Lett., EDL-8, 361 (1987).
    [19] A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, “Analysis of solid phase crystallization in amorphized polycrystalline Si films on quartz substrate,” J. Appl. Phys., 66, 4248 (1989).
    [20] K. Nakazama, “Recrystallization of amorphous silicon films deposited by low pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys., 69, 1703 (1991).
    [21] A. T. Vouttsas and M. K. Hatalis, “Deposition and crystallization of a-Si low pressure chemical vapor deposited films obtained by low temperature pyrolysis of disiline,” J. Electronchem. Soc., 140, 871 (1993).
    [22] S. Hasegawa, S. Skamoto, T. Inokuma and Y. Kurata, “structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane,” Appl. Phys. Lett., 62, 1218 (1993).
    [23] M. K. Hatalis and D. W. Greve, “Larger grain polrcerstalline silicon by low temperature annealing of low pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., 63, 2260 (1988).
    [24] A. Nakamura, F. Emoto, E. Fujii, Y. Uemoto, A. Yamamoto, K. Senda, G. Kano, “Recrystallization mechanism for solid phase growth of poly-Si films on quartz substrate,” Jpn. J. Appl. Phys. Pt. 2, 27, 2408 (1988).
    [25] J. H. Kim, J. Y. Lee and K. S. Nam, “High resolution transmission electron microscopy study of solid phase crystallized silicon thin films on SiO2: Crystal growth and defects formation,” J. Appl. Phys., 77, 95 (1995).
    [26] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko and K. Hotta, “High performance TFTs fabricated by XeCl excimer laser annealing of amorphous silicon thin films,” IEEE Trans. Electron Devices, ED-36, 2868 (1989).
    [27] R. Ishihara, W. C. Yeh, T. Hattori and M. Matsumra, “Effects of light pulse duration on excimer laser crystallization characteristics of silicon thin films,” Jpn. J. Appl. Phys. Pt. 1, 34, 1759 (1995).
    [28] M. Miyasaks and J. Stoemenos, “Excimer laser annealing of amorphous and solid phase crystallized silicon films,” J. Appl. Phys., 86, 5556 (1999).
    [29] Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline silicon thin films formed by metal induced solid phase crystallization of amorphous silicon,” J. Vac. Sci. Technol. A, 16, 3352 (1998).
    [30] G. Radnoczi, A. Robertson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69, 6394 (1991).
    [31] J. Stoemenos, J. Mcintosh, N. A. Economou, Y. K. Bhatnagar, P. A. Coxon, A. J. Lowe and M. G. Clark, “Crystallization of amorphous silicon by reconstructive transformation utilizing gold,” Appl. Phys. Lett., 58, 1196 (1991).
    [32] B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” J. Appl. Phys., 73, 7402 (1993).
    [33] S. W. Lee, Y. C. Jeon and S. K. Joo, “Pd induced crystallization of amorphous Si thin films,” Appl. Phys. Lett., 66, 1671 (1995).
    [34] C. D. Lien, M. A. Nicolet and S. S. Lau, “Low temperature formation of NiSi2 from evaporated silicon,” Phys. Status Solidi A, 81, 123 (1984).
    [35] Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys., 29, 2698 (1990).
    [36] C. Hayzelden, J. L. Batstone, and R. C. Cammarata, ”In situ transmission electron microscopy studies of silicide mediated crystallization of amorphous silicon,” Appl. Phys. Lett., 60, 225 (1992).
    [37] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
    [38] J. Jang, S. J. Park, K. H. Kim, B. R. Cho, W. K. Kwak, and S. Y. Yoon, “Polycrystalline silicon produced by Ni silicide mediated crystallization of amorphous silicon in an electric field,” J. Appl. Phys., 88, 3099 (2000).
    [39] S. Y. Yoon, S. J. Park, K. H. Kim, J. Jang, and C. O. Kim, “Structural and electrical properties of polycrystalline silicon produced by low temperature Ni silicide medicated crystallization of the amorphous phase,” J. Appl. Phys., 87, 609 (2000).
    [40] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., 84, 194 (1998).
    [41] L. K. Lam, S. Chen, and D. G. Ast, “Kinetics of nickel induced lateral crystallization of amorphous silicon thin film transistors by rapid thermal and furnace anneals,” Appl. Phys. Lett., 74, 1866 (1999).
    [42] G. A. Bhat, Z. Jin, H. S. Kwok, and M. Wong, “Performance of thin-film transistors with ultrathin Ni-MILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., 20, 97 (1999).
    Chapter 2
    [1] C. D. Lien, M. A. Nicolet and S. S. Lau, “Low temperature formation of NiSi2 from evaporated silicon,” Phys. Status Solidi A, 81, 123 (1984).
    [2] Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys., 29, 2698 (1990).
    [3] C. Hayzelden, J. L. Batstone, and R. C. Cammarata, ”In situ transmission electron microscopy studies of silicide mediated crystallization of amorphous silicon,” Appl. Phys. Lett., 60, 225 (1992).
    [4] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
    [5] T. H. Wang and L. J. Chou, “Study of the pattern and thickness effect on low-temperature polycrystalline silicon thin film induced by nickel silicide crystallization method,” A Master Thesis Submitted to Institute of Material Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June, 2001.
    Chapter 4
    [1] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
    [2] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., 84, 194 (1998).
    [3] L. K. Lam, S. Chen, and D. G. Ast, “Kinetics of nickel induced lateral crystallization of amorphous silicon thin film transistors by rapid thermal and furnace anneals,” Appl. Phys. Lett., 74, 1866 (1999).
    [4] Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline silicon thin films formed by metal induced solid phase crystallization of amorphous silicon,” J. Vac. Sci. Technol. A, 16, 3352 (1998).
    [5] J. Gu, S. Y. Chou, N. Yao, H. Zanddergen, and J. K. Farrer, “Single-crystal Si formed on amorphous substrate at low temperature by nanopatterning and nickel-induced lateral crystallization,” Appl. Phys. Lett., 81, 1104 (2002).
    [6] M. Miyasaka, K. Makihira, T. Asano, E. Polychroniadis, and J. Stoemenos, “In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films,” Appl. Phys. Lett., 80, 944 (2002).
    [7] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films, 383, 34 (2001).
    [8] Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Third Edition), Chapter 4.
    [9] Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Third Edition), Chapter 5.
    [10] Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Third Edition), Chapter 17.
    [11] W. H. Wang, Z. H. Liu, J. Zhang, J. L. Chen, G. H. Wu, and W. S. Zhan, “Thermoelastic intermartensitic transformation and its internal stress dependency in Ni52Mn24Ga24 single crystals,” Physical Review B, 66, 052411 (2002).
    [12] J. H. Kim, J. Y. Lee and K. S. Nam, “High resolution transmission electron microscopy study of solid phase crystallized silicon thin films on SiO2: Crystal growth and defects formation,” J. Appl. Phys., 77, 95 (1995).
    [13] J. L. Batstone, “In situ crystallization of amorphous silicon in the transmission electron microscope,” Philos. Mag. A, 67, 51 (1993).
    [14] X. Z. BO, N. Yao, S. R. Shieh, T. S. Duffy, and J. C. Sturm, “Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide,”
    J. Appl. Phys., 91, 2910 (2002).
    [15] R. Drosd and J. Washburn, “Some observations on the amorphous to crystalline transformation in silicon,” J. Appl. Phys., 53, 397 (1982).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE