簡易檢索 / 詳目顯示

研究生: 王紹達
Wang, Shao-Da
論文名稱: 單壓電層懸臂式麥克風之設計與分析
Design and Analysis of Unimorph Piezoelectric MEMS Microphone
指導教授: 方維倫
Fang, Weileun
口試委員: 李昇憲
Li, Sheng-Shian
吳名清
Wu, Mingching
羅松成
Lo, Sung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 139
中文關鍵詞: 微機電麥克風性能指標壓電PZT單壓電層聲學訊噪比頻寬懸臂樑
外文關鍵詞: MEMS microphone, figure of merit, piezoelectric, PZT, unimorph, acoustic, SNR, Bandwidth, Cantilever
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電壓電式麥克風相較於電容式麥克風,擁有防水防塵與低功耗的優勢,然而受限於壓電材料本身的介電損失,使壓電式麥克風元件訊噪比較低,因此本研究將以訊噪比提升作為主要目標。首先將建立單壓電層懸臂式麥克風之解析模型,計算出能夠同時進行訊噪比與頻寬兩麥克風重要參數的性能指標-訊噪比與頻寬之乘積;並以此為設計基準進行下電極與PZT壓電材料層定義,提升元件的輸出能量並減少振膜之等效質量,使元件之訊噪比與頻寬得到上升。本研究以沉積PZT薄膜的SOI晶圓完成製程,完成後首先萃取使用之PZT各項參數,而後進行元件之聲學量測。結果顯示PZT/下電極定義後,其訊噪比於1 kHz下達到77.2 dB,且工作頻寬涵蓋至10 kHz,相比於未進行壓電材料與下電極定義的兩種不同長寬比的懸臂振膜,能在近乎等量的訊噪比下將頻寬提升兩倍;或是在相同的工作頻寬下提升4.6 dB的訊噪比輸出。另外,本研究額外透過給予壓電薄膜額外偏壓,減緩振膜殘餘應力翹曲,改善前後腔間孔隙造成的聲學短路,使訊噪比在1 kHz進一步提升了2.3 dB,更加改善元件性能。


    Piezoelectric MEMS microphone features high environment tolerance, simple structure, and good linearity. Which provides a more reliable solution for a MEMS microphone. Unfortunately, due to relatively high noise floor by dielectric loss of piezoelectric material, Signal-to-noise ratio (SNR) of a piezoelectric microphone needs further improvement. This study starts with developing the theoretical solution of unimorph MEMS microphone. Then establish the figure-of-merit to estimate the trade-off between SNR and bandwidth (SNR×BW). Base on figure-of-merit, this study proposed a piezoelectric MEMS microphone with a partially removed PZT layer to increase the bandwidth without sacrificing SNR. Measurements demonstrate the SNR at 1 kHz up to 77.2 dB with bandwidth up to 10 kHz for the proposed design, Moreover, the proposed design has a 2.3 dB sensitivity enhancement after applying 10 V bias on PZT. Further, enhance the performance of unimporph MEMS microphone. Also, material properties of PZT used in this study have been well measured in this study.

    摘要           I Abstract       II 誌謝           III 目錄           V 圖目錄           IX 表目錄           XV 第一章 緒論       1 1-1 前言       1 1-2 微機電麥克風      3 1-2-1 電容式微機電麥克風  4 1-2-2 壓電式微機電麥克風  5 1-3 研究動機       10 1-4 全文架構       11 第二章 感測原理與分析模型 20 2-1 麥克風性能指標   20 2-2 壓電效應       22 2-3 壓電麥克風分析模型   24 2-3-1 彎矩應力       25 2-3-2 機電轉換與靈敏度  28 2-3-3 介電損失等效雜訊  29 2-3-4 訊噪比與電能輸出  31 2-3-5 共振頻率與頻寬   32 2-3-6 結果探討       33 第三章 設計概念與製程結果  44 3-1 設計概念       44 3-2 結構設計       45 3-3 集總電路模型與讀取電路設計 48 3-4 製程流程       52 3-4-1 PZT濕蝕刻製程   54 3-4-2 上電極掀舉製程   55 3-4-3 正面兩步驟乾蝕刻製程 56 3-4-4 背面深矽蝕刻製程   57 3-5 製程結果        59 第四章 量測結果       74 4-1 PZT材料參數萃取   74 4-1-1 介電常數與介電損失  74 4-1-2 d31壓電係數  75 4-1-3 楊氏模數       77 4-1-4 機電耦合係數   79 4-1-5 殘餘應力       80 4-2 聲學性質量測      80 4-2-1 聲學量測架設   81 4-2-2 訊噪比量測      81 4-2-3 頻率響應量測   82 4-2-4 聲學短路改善   84 第五章 結論與未來工作   98 5-1 結論        98 5-2 未來工作        99 5-2-1 壓電材料選用  99 5-2-2 性能提升-應力分布改善結構 101 5-2-3 聲學短路改善-振膜連接結構 102 參考文獻              110 附錄A-複合膜層殘餘應力萃取 114 A-1 分析模型         114 A-2 殘餘應力萃取公式     115 A-2-1 雙膜層懸臂結構     115 A-2-2 多膜層懸臂結構     117 A-3 量測結果         119 附錄B-各式振膜結構比較    127 B-1 性能比較公式       127 B-2 各式振膜設計      129 B-2-1 封閉式振膜      129 B-2-2 橋狀式振膜      130 B-2-3 懸臂式振膜      130 B-2-4 彈簧式振膜      132 B-2-5 結果比較        133

    [1]YOLE Developpement, [Online]. Available: http://www.yole.fr/.
    [2]YOLE Developpement, [Online].
    Available: http://www.yole.fr/Audio_IndustryOverview.aspx.
    [3]Goertek, [Online]. Available: https://www.goertek.com/en/.
    [4]knowles, [Online]. Available: https://www.knowles.com/.
    [5]infineon, [Online]. Available: https://www.infineon.com/.
    [6]TDK invensense, [Online].
    Available: https://www.tdk.com/corp/en/index.htm.
    [7]vesper, [Online].
    Available: https://vespermems.com/products/vm1010/.
    [8]Z. Siti, H. Azian, M. Burhanuddin, M. Faisal, "A Review of MEMS Capacitive Microphones," Micromachines, vol. 11, p. 484, 2020.
    [9]M. A. Shah, I.A. Shah, D. Lee, S. Hur, "Design Approaches of MEMS Microphones for Enhanced Performance," Journal of Sensors, vol. 2019 9294528, 2019.
    [10]W. Mao, C. Cheng, S. Lo, Y. Chen, W. Fang, "Design and implementation of a CMOS-MEMS microphone without the back-plate," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017.
    [11] S.Lo, J.Wang, M.Wu, W.Fang, "Sensitivity improvement of no-back-plate MEMS microphone using polysilicon trench-refilled process," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017.
    [12]S. Chowdhury, M. Ahmadi, W. C. Miller, "Nonlinear effects in MEMS capacitive microphone design," in Proceedings International Conference on MEMS, NANO and Smart Systems, 2003.
    [13]H. Jacobsen, K. Prume, B. Wagner, K. Ortner, T. Jung, "High-rate sputtering of thick PZT thin films for MEMS," Journal of Electroceramics, vol. 25, pp. 198-202, 2010.
    [14]A. Khorsand Zak, W. H. Abd Majid, M. Darroudi, "Synthesis and characterization of sot-gel derived single-phase PZT nanoparticles in aqueous polyol solution," Journal of Optoelectronics and Advanced Materials, vol. 12, pp. 1714-1719, 2010.
    [15]R. A. Wolf, S. Trolier-Mckinstry, "Temperature dependence of the piezoelectric response in lead zirconate titanate films," Journal of Applied Physics, vol. 95(3), pp. 1397-1406, 2004.
    [16]R. Hou, D. Hutson, K. J. Kirk, "Development of sputtered AlN thin-film ultrasonic transducers for durable high-temperature applications," Insight - Non-Destructive Testing and Condition Monitoring, vol. 55(6), pp. 302-307, 2013.
    [17]W. R. Ali, M. Prasad, "Piezoelectric MEMS based acoustic sensors: A review," Sensors and Actuators A, vol. 301 111756, 2020.
    [18]N. Ledermann, P. Muralt, J. Baborowski, M. Forster, J.Pellaux, "Piezoelectric PZT Thin Film Cantilever and Bridge Acoustic Sensors for Miniaturized Photoacoustic Gas Detector," Journal of Micromechanics and Microengineering - J MICROMECHANIC MICROENGINEER, vol. 14, pp. 1650-1658, 1 12 2004.
    [19]R. J. Littrell, "High performance Piezoelectric MEMS Microphone", PhD Thesis, 2010.
    [20]R. Littrell and K. Grosh, "Noise minimization in micromachined piezoelectric microphones," Proceedings of Meetings on Acoustics, vol. 19 030041, 2013.
    [21]Y. Seo, D. Corona, N. A. Hall, "On the theoretical maximum achievable signal-to-noise ratio (SNR) of piezoelectric microphones," Sensors and Actuators A: Physical, vol. 264, pp. 341-346, 2017.
    [22]"Facts about speech intelligibility," DPA microphones, [Online]. Available: https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility.
    [23]Z. Ruili, Z. Rong, M. Jianmin, D. Lei, "Research on noise locating of diesel engine block based on microphone array," in 2018 Chinese Control And Decision Conference (CCDC), 2018.
    [24]J.-L. Huang, S.-C. Lo, J.-J. Wang, C.-E. Lu, S.-H. Tseng, M.-C. Wu and W. Fang, "High Sensitivity and High S/N Microphone Achieved by PZT Film With Central-Circle Electrode Design," in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 2017.
    [25]陳昱辰, "新穎懸臂結構設計於壓電麥克風之性能提升," 國立清華大學碩士論文, 2020.
    [26]"AN-1112: Microphone Specifications Explained," InvenSense, [Online]. Available: https://wiki.analog.com/resources/app-notes/an-1112.
    [27]"A-weighting," [Online].
    Available: https://en.wikipedia.org/wiki/A-weighting.
    [28]"Piezoelectric Technologies," Unictron Technologies Corp., [Online]. Available: https://www.unictron.com/piezo/piezoelectric-technologies/.
    [29]A. Erturk, D. J. Inman, Piezoelectric Energy Harvesting, 2011, pp. 343-348.
    [30]"wikipedia," [Online].
    Available: https://en.wikipedia.org/wiki/Dielectric_loss.
    [31]S. S. Rao, Mechanical Vibrations Fifth Edition, Upper Saddle River, NJ: Prentice Hall, 2011.
    [32]H. A. C. Tilmans, "Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems," Journal of Micromechanics and Microengineering, vol. 6, pp. 157-176, 1996.
    [33]H. A. C. Tilmans, "Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems," Journal of Micromechanics and Microengineering, vol. 7, pp. 285-309, 1997.
    [34]F. Cerini, S. Adorno, "Flexible Simulation Platform for Multilayer Piezoelectric MEMS Microphones with Signal-to-Noise Ratio (SNR) Evaluation," Proceedings, vol. 2, p. 862, 2018.
    [35]M. Dekkers, H. Boschker, M. vanZalk, M. Nguyen, H. Nazeer, E. Houwman and G. Rijnders, "The significance of the piezoelectric coefficient d31,eff determined from cantilever structures," J. Micromech. Microeng., vol. 23 025008, 2013.
    [36]L. Buchaillot, E. Farnault, M.Hoummady, H.Fujita, "Silicon Nitride Thin Films Young's Modulus Determination by an Optical Non Destructive Method," Japanese Journal of Applied Physics, vol. 36, pp. L794-L797, 1997.
    [37]X. Guo, Z. Zhou, C. Sun, W. Li, Q. Huang, "A Simple Extraction Method of Young’s Modulus for Multilayer Films in MEMS Applications," Micromachines, vol. 8, p. 201, 2017.
    [38]B. Euan, U. Deepak, "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon," Microelectromechanical Systems, Journal of, vol. 21, pp. 243-249, 2012.
    [39]M. hopcroft, W. D. Nix, T. Kenny, "What is the Young's Modulus of Silicon?," Journal of Microelectromechanical Systems, vol. 19, pp. 229-238.
    [40]G. G. Stoney, C. Algernon, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82(553), pp. 172-175, 1909.
    [41]R. J. Ong, D. A. Payne, N. R. Sottos, "Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties," Journal of the American Ceramic Society, vol. 88(10), pp. 2839-2847, 2005.
    [42]W. Fang and J. A. Wickert, "Determining mean and gradient residual stresses in thin films using micromachined cantilevers," Journal of Micromechanics and Microengineering, vol. 6(3), pp. 301-309, 1996.

    無法下載圖示 全文公開日期 2023/08/16 (校內網路)
    全文公開日期 2025/08/15 (校外網路)

    QR CODE