研究生: |
王紹達 Wang, Shao-Da |
---|---|
論文名稱: |
單壓電層懸臂式麥克風之設計與分析 Design and Analysis of Unimorph Piezoelectric MEMS Microphone |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
李昇憲
Li, Sheng-Shian 吳名清 Wu, Mingching 羅松成 Lo, Sung-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 139 |
中文關鍵詞: | 微機電麥克風 、性能指標 、壓電 、PZT 、單壓電層 、聲學 、訊噪比 、頻寬 、懸臂樑 |
外文關鍵詞: | MEMS microphone, figure of merit, piezoelectric, PZT, unimorph, acoustic, SNR, Bandwidth, Cantilever |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電壓電式麥克風相較於電容式麥克風,擁有防水防塵與低功耗的優勢,然而受限於壓電材料本身的介電損失,使壓電式麥克風元件訊噪比較低,因此本研究將以訊噪比提升作為主要目標。首先將建立單壓電層懸臂式麥克風之解析模型,計算出能夠同時進行訊噪比與頻寬兩麥克風重要參數的性能指標-訊噪比與頻寬之乘積;並以此為設計基準進行下電極與PZT壓電材料層定義,提升元件的輸出能量並減少振膜之等效質量,使元件之訊噪比與頻寬得到上升。本研究以沉積PZT薄膜的SOI晶圓完成製程,完成後首先萃取使用之PZT各項參數,而後進行元件之聲學量測。結果顯示PZT/下電極定義後,其訊噪比於1 kHz下達到77.2 dB,且工作頻寬涵蓋至10 kHz,相比於未進行壓電材料與下電極定義的兩種不同長寬比的懸臂振膜,能在近乎等量的訊噪比下將頻寬提升兩倍;或是在相同的工作頻寬下提升4.6 dB的訊噪比輸出。另外,本研究額外透過給予壓電薄膜額外偏壓,減緩振膜殘餘應力翹曲,改善前後腔間孔隙造成的聲學短路,使訊噪比在1 kHz進一步提升了2.3 dB,更加改善元件性能。
Piezoelectric MEMS microphone features high environment tolerance, simple structure, and good linearity. Which provides a more reliable solution for a MEMS microphone. Unfortunately, due to relatively high noise floor by dielectric loss of piezoelectric material, Signal-to-noise ratio (SNR) of a piezoelectric microphone needs further improvement. This study starts with developing the theoretical solution of unimorph MEMS microphone. Then establish the figure-of-merit to estimate the trade-off between SNR and bandwidth (SNR×BW). Base on figure-of-merit, this study proposed a piezoelectric MEMS microphone with a partially removed PZT layer to increase the bandwidth without sacrificing SNR. Measurements demonstrate the SNR at 1 kHz up to 77.2 dB with bandwidth up to 10 kHz for the proposed design, Moreover, the proposed design has a 2.3 dB sensitivity enhancement after applying 10 V bias on PZT. Further, enhance the performance of unimporph MEMS microphone. Also, material properties of PZT used in this study have been well measured in this study.
[1]YOLE Developpement, [Online]. Available: http://www.yole.fr/.
[2]YOLE Developpement, [Online].
Available: http://www.yole.fr/Audio_IndustryOverview.aspx.
[3]Goertek, [Online]. Available: https://www.goertek.com/en/.
[4]knowles, [Online]. Available: https://www.knowles.com/.
[5]infineon, [Online]. Available: https://www.infineon.com/.
[6]TDK invensense, [Online].
Available: https://www.tdk.com/corp/en/index.htm.
[7]vesper, [Online].
Available: https://vespermems.com/products/vm1010/.
[8]Z. Siti, H. Azian, M. Burhanuddin, M. Faisal, "A Review of MEMS Capacitive Microphones," Micromachines, vol. 11, p. 484, 2020.
[9]M. A. Shah, I.A. Shah, D. Lee, S. Hur, "Design Approaches of MEMS Microphones for Enhanced Performance," Journal of Sensors, vol. 2019 9294528, 2019.
[10]W. Mao, C. Cheng, S. Lo, Y. Chen, W. Fang, "Design and implementation of a CMOS-MEMS microphone without the back-plate," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017.
[11] S.Lo, J.Wang, M.Wu, W.Fang, "Sensitivity improvement of no-back-plate MEMS microphone using polysilicon trench-refilled process," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017.
[12]S. Chowdhury, M. Ahmadi, W. C. Miller, "Nonlinear effects in MEMS capacitive microphone design," in Proceedings International Conference on MEMS, NANO and Smart Systems, 2003.
[13]H. Jacobsen, K. Prume, B. Wagner, K. Ortner, T. Jung, "High-rate sputtering of thick PZT thin films for MEMS," Journal of Electroceramics, vol. 25, pp. 198-202, 2010.
[14]A. Khorsand Zak, W. H. Abd Majid, M. Darroudi, "Synthesis and characterization of sot-gel derived single-phase PZT nanoparticles in aqueous polyol solution," Journal of Optoelectronics and Advanced Materials, vol. 12, pp. 1714-1719, 2010.
[15]R. A. Wolf, S. Trolier-Mckinstry, "Temperature dependence of the piezoelectric response in lead zirconate titanate films," Journal of Applied Physics, vol. 95(3), pp. 1397-1406, 2004.
[16]R. Hou, D. Hutson, K. J. Kirk, "Development of sputtered AlN thin-film ultrasonic transducers for durable high-temperature applications," Insight - Non-Destructive Testing and Condition Monitoring, vol. 55(6), pp. 302-307, 2013.
[17]W. R. Ali, M. Prasad, "Piezoelectric MEMS based acoustic sensors: A review," Sensors and Actuators A, vol. 301 111756, 2020.
[18]N. Ledermann, P. Muralt, J. Baborowski, M. Forster, J.Pellaux, "Piezoelectric PZT Thin Film Cantilever and Bridge Acoustic Sensors for Miniaturized Photoacoustic Gas Detector," Journal of Micromechanics and Microengineering - J MICROMECHANIC MICROENGINEER, vol. 14, pp. 1650-1658, 1 12 2004.
[19]R. J. Littrell, "High performance Piezoelectric MEMS Microphone", PhD Thesis, 2010.
[20]R. Littrell and K. Grosh, "Noise minimization in micromachined piezoelectric microphones," Proceedings of Meetings on Acoustics, vol. 19 030041, 2013.
[21]Y. Seo, D. Corona, N. A. Hall, "On the theoretical maximum achievable signal-to-noise ratio (SNR) of piezoelectric microphones," Sensors and Actuators A: Physical, vol. 264, pp. 341-346, 2017.
[22]"Facts about speech intelligibility," DPA microphones, [Online]. Available: https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility.
[23]Z. Ruili, Z. Rong, M. Jianmin, D. Lei, "Research on noise locating of diesel engine block based on microphone array," in 2018 Chinese Control And Decision Conference (CCDC), 2018.
[24]J.-L. Huang, S.-C. Lo, J.-J. Wang, C.-E. Lu, S.-H. Tseng, M.-C. Wu and W. Fang, "High Sensitivity and High S/N Microphone Achieved by PZT Film With Central-Circle Electrode Design," in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 2017.
[25]陳昱辰, "新穎懸臂結構設計於壓電麥克風之性能提升," 國立清華大學碩士論文, 2020.
[26]"AN-1112: Microphone Specifications Explained," InvenSense, [Online]. Available: https://wiki.analog.com/resources/app-notes/an-1112.
[27]"A-weighting," [Online].
Available: https://en.wikipedia.org/wiki/A-weighting.
[28]"Piezoelectric Technologies," Unictron Technologies Corp., [Online]. Available: https://www.unictron.com/piezo/piezoelectric-technologies/.
[29]A. Erturk, D. J. Inman, Piezoelectric Energy Harvesting, 2011, pp. 343-348.
[30]"wikipedia," [Online].
Available: https://en.wikipedia.org/wiki/Dielectric_loss.
[31]S. S. Rao, Mechanical Vibrations Fifth Edition, Upper Saddle River, NJ: Prentice Hall, 2011.
[32]H. A. C. Tilmans, "Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems," Journal of Micromechanics and Microengineering, vol. 6, pp. 157-176, 1996.
[33]H. A. C. Tilmans, "Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems," Journal of Micromechanics and Microengineering, vol. 7, pp. 285-309, 1997.
[34]F. Cerini, S. Adorno, "Flexible Simulation Platform for Multilayer Piezoelectric MEMS Microphones with Signal-to-Noise Ratio (SNR) Evaluation," Proceedings, vol. 2, p. 862, 2018.
[35]M. Dekkers, H. Boschker, M. vanZalk, M. Nguyen, H. Nazeer, E. Houwman and G. Rijnders, "The significance of the piezoelectric coefficient d31,eff determined from cantilever structures," J. Micromech. Microeng., vol. 23 025008, 2013.
[36]L. Buchaillot, E. Farnault, M.Hoummady, H.Fujita, "Silicon Nitride Thin Films Young's Modulus Determination by an Optical Non Destructive Method," Japanese Journal of Applied Physics, vol. 36, pp. L794-L797, 1997.
[37]X. Guo, Z. Zhou, C. Sun, W. Li, Q. Huang, "A Simple Extraction Method of Young’s Modulus for Multilayer Films in MEMS Applications," Micromachines, vol. 8, p. 201, 2017.
[38]B. Euan, U. Deepak, "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon," Microelectromechanical Systems, Journal of, vol. 21, pp. 243-249, 2012.
[39]M. hopcroft, W. D. Nix, T. Kenny, "What is the Young's Modulus of Silicon?," Journal of Microelectromechanical Systems, vol. 19, pp. 229-238.
[40]G. G. Stoney, C. Algernon, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82(553), pp. 172-175, 1909.
[41]R. J. Ong, D. A. Payne, N. R. Sottos, "Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties," Journal of the American Ceramic Society, vol. 88(10), pp. 2839-2847, 2005.
[42]W. Fang and J. A. Wickert, "Determining mean and gradient residual stresses in thin films using micromachined cantilevers," Journal of Micromechanics and Microengineering, vol. 6(3), pp. 301-309, 1996.