研究生: |
鄭博元 |
---|---|
論文名稱: |
聚乙二醇-聚乳酸聚丁內醯胺共聚物溫度敏感型水膠製備及其於軟骨組織工程之應用 Injectable thermosensitive copolymer mPEG-poly(pyrrolidione-co-lactide) hydrogel: Synthesis and application for cartilage tissue engineering |
指導教授: | 朱一民 |
口試委員: |
魏毓宏
姚少凌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 聚酯醯胺 、溫度敏感型水膠 、軟骨組織工程 |
外文關鍵詞: | poly(ester-amide), thermosensitive hydrogel, cartilage tissue engineering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討可注射溫度敏感型poly(ester-amide)水膠methoxy poly(ethylene glycol)-b-poly(pyrrolidone-co-lactide)(簡稱mPDLA)之性質以及其作為軟骨組織工程支架之潛力。利用D,L-lactide (LA)、2-pyrrolidone (PD)單體與mPEG550開環聚合反應,在固定單體比例([PD]/[LA]=30/70)下合成一系列不同親/疏水分子量比例之mPDLA(命名為P3L7),找出具有最佳成膠特性之親/疏水比例,並且以未含PD單體的mPEG-PLA作為對照組(命名為P0L10)。結果顯示P3L7與P0L10之共聚物水溶液皆可形成奈米微胞,臨界微胞濃度介於0.1~0.3 mg/ml之間。由DLS測定結果發現P3L7共聚物之奈米微胞均隨溫度上升而有聚集的現象。藉由倒置試管法初步測試其成膠性質,兩團聯共聚物中最佳的親/疏水比例為550/1405。由流變儀可以證實P3L7兩團聯共聚物的黏度以及機械性質會隨著溫度而變化,確實具有溫度敏感性,並且可以在生理溫度下快速成膠。此外,P3L7之吸水膨潤程度較P0L10高,可以提供細胞較佳的生長環境。體外降解實驗結果則顯示P3L7降解產物造成的酸性於初期較P0L10低。在水膠包埋軟骨細胞的實驗部分可以發現軟骨細胞可以在P3L7水膠中生長並且具有正常軟骨化之表現。動物實驗結果則顯示以15 wt% P3L7水膠修復軟骨缺陷可以得到良好的結果。綜合上述結果,我們可以推論P3L7具有可注射、原位成膠以及生物相容性等優點,並且比聚酯類水膠具有較低的降解酸性、較高的含水率,因此適宜做為軟骨組織工程之水膠支架。
The objective of this study was to discuss the thermoresponsive properties of a novel poly(ester-amide) polymer, i.e. methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide)(mPDLA) diblock copolymers and evaluate its capability of chondrocyte encapsulation for cartilage tissue engineering. A series of amphiphilic diblock copolymers were synthesized by ring-opening polymerization of mPEG550, D,L-lactide and 2-pyrrolidone. The initial ratio of monomers in mPDLA was [PD]/[LA]=30/70 and the target molecular weight of hydrophobic segment were 1105, 1405, 1705 respectively. The copolymers were characterized via1H-NMR,FT-IR spectroscopy, and GPC. The results indicated that the diblock copolymers formed nano-micelles at low concentrations in aqueous phase. The micelle properties were also measured. The critical micelle concentration(CMC) was ranged from 0.1 to 0.3 mg/ml.As the temperature increased, micelles aggregation was observed by DLS. The diblock copolymer P3L7-1405 solution underwent a sol-to-gel phase transition, which was confirmed by test tube inverting method. Rheology results showed that viscoelastic properties of the copolymer solution varied with temperature, indicative of the formation of a gel. The mPDLA diblock copolymer solutions exhibited sol-gel transition behavior as a function of temperature. In vitro degradation test showed that the acidity of degradation was effectively reduced by introducing the monomer PD into polyester hydrogel. mPDLA alsoexhibited higher water content from swelling ratio. It would provide an environment that is preferred by cells; therefore, mPDLA diblock copolymer exhibited better biocompatibility in vitro.
As an injectable scaffold, the viability, cell proliferation and chondrogenesis of chondrocytes encapsulated in mPDLA hydrogel were investigated. MTT and DNA quantification showed proliferation of cells within 2 weeks. By Live/Dead stain we can confirm that the morphology of cells in hydrogel was typical sphere which mature chondrocytes supposed to be. Also, ECM content was significant increased within 2 weeks compared with initial amount. In vivo test showed the repair of cartilage defect treated with 15% mPDLA hydrogel. From above results, we deduced that this thermosensitive hydrogel was sutible as an injectable scaffold for cartilage tissue engineering.
1. Tracy, M.A., et al., Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials, 1999. 20(11): p. 1057-62.
2. Wichterle, O., LíM, D, Hydrophilic Gels for Biological Use. Nature, 1960. 185: p. 117-118.
3. Lim, F. and A.M. Sun, Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science, 1980. 210(4472): p. 908-910.
4. Yannas, I.V., et al., Synthesis and Characterization of a Model Extracellular-Matrix That Induces Partial Regeneration of Adult Mammalian Skin. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(3): p. 933-937.
5. Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 54(1): p. 3-12.
6. Hennink, W.E., et al., Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm, 2004. 277(1-2): p. 99-104.
7. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev, 2002. 54(1): p. 37-51.
8. Jeong, Y., Joo, M.K., Sohn, Y.S., Jeong, B., Reverse Thermal Organogel. Advanced Materials, 2007. 19: p. 3947–3950.
9. Klouda, L. and A.G. Mikos, Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm, 2008. 68(1): p. 34-45.
10. Bostman, O.M., Absorbable implants for the fixation of fractures. J Bone Joint Surg Am, 1991. 73(1): p. 148-53.
11. Tokiwa, Y., et al., Biodegradability of plastics. Int J Mol Sci, 2009. 10(9): p. 3722-42.
12. Tachibana, K., Hashimoto, K., Tansho, N., Okawa, H., Chemical modification of chain end in nylon 4 and improvement of its thermal stability. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49: p. 2495–2503.
13. Deng, M., et al., Synthesis and characterization of biodegradable poly(ester amide)s with pendant amine functional groups and in vitro cellular response. Biomacromolecules, 2009. 10(11): p. 3037-47.
14. Bettinger, C.J., et al., Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 2008. 29(15): p. 2315-25.
15. Rodriguez-Galan, A., Franco, L., Puiggali, J, Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 2010. 3: p. 65-99.
16. 楊長彬, 以組織工程製備新生軟骨作為軟骨修復, 2004, 臺北醫學大學生物醫學材料研究所.
17. http://altunderground.com/wp-content/uploads/2012/03/articular-cartilage-diagram.jpg.
18. http://www.bidmc.org/Research/Departments/Radiology/Laboratories/Cartilage/aspx.
19. 丁育民, 利用三維列印製模技術製作軟骨組織工程支架, 2008, 國立成功大學醫學工程研究所.
20. Geffre, C.P., In vivo evaluation of polymer implants for cartilage regeneration and joint load monitoring. 2010.
21. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 24(3): p. 430-435.
22. 薛敬和, 生命科學與工程. 2012: 百晴文化科技出版股份有限公司.
23. Barbero, A., et al., Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage, 2004. 12(6): p. 476-84.
24. Goldring, M.B., Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol, 2006. 20(5): p. 1003-25.
25. Spiller, K.L., S.A. Maher, and A.M. Lowman, Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev, 2011. 17(4): p. 281-99.
26. Tan, H.P. and K.G. Marra, Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials, 2010. 3(3): p. 1746-1767.
27. Balakrishnan, B. and R. Banerjee, Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev, 2011. 111(8): p. 4453-74.
28. Nicodemus, G.D. and S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B-Reviews, 2008. 14(2): p. 149-165.
29. Gutowska, A., B. Jeong, and M. Jasionowski, Injectable gels for tissue engineering. Anatomical Record, 2001. 263(4): p. 342-349.
30. Wennink, J., Biodegradable Hydrogels by Physical and Enzymatic Crosslinking of biomacromolecules. 2013.
31. Jeong, B., et al., Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules, 2002. 3(4): p. 865-8.
32. Peng, K.T., et al., Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials, 2010. 31(19): p. 5227-36.
33. 李郁旻, mPEG-PLGA溫度敏感型水膠製備及其不同共聚物組成對藥物輸送系統之影響研究, 2009, 國立清華大學化學工程學系.
34. Tsuji, H., A. Mizuno, and Y. Ikada, Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 2000. 77(7): p. 1452-1464.
35. Sa-Lima, H., et al., Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications. J Biomed Mater Res A, 2011. 98(4): p. 596-603.