簡易檢索 / 詳目顯示

研究生: 吳玉忻
Wu, Yu Hsin
論文名稱: 利用斜向入射與藍寶石晶體提升X光共振腔輸出頻譜效率與能量解析度之研究
The improvement of hard X-ray resonators in efficiency and energy resolution using inclined incidence geometry and sapphire crystals
指導教授: 張石麟
Chang, Shih Lin
口試委員: 蘇雲良
傅建中
湯茂竹
黃玉山
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: X光共振腔斜向入射藍寶石
外文關鍵詞: inclined incidence
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用晶體繞射作為反射機制之X光共振腔於1967年提出,由於實驗有賴高能量解析度之光源以及樣品製程之困難,直至2005年才首次觀察到X光Fabry–Pérot共振腔之干涉條紋:利用高能量解析單光儀(high resolution monochromator,HRM)於能量14.4388 keV時產生能量解析度為0.36 meV之X光,量測Si(12 4 0)布拉格背向繞射在共振腔之輸出頻譜。但由於矽晶體之鑽石結構特性,使得多光繞射無法避免,輸出頻譜不盡理想。為提升X光Fabry–Pérot共振腔之實用性,本論文提出兩種方式改善晶體製成之共振腔所遇到之困難:
    1. 使用藍寶石(Al2O3)取代矽(Si)作為共振腔之繞射材料:藍寶石之結構為hexagonal,在能量E=14.3148 keV時,背向繞射(0 0 0 30)僅為兩光繞射,少了多光繞射之干擾,預期可提升晶體反射率以及輸出頻譜之能量解析度。
    2. 斜向入射X光Fabry–Pérot共振腔:由於晶體繞射之機制很容易遇到多光繞射之問題,我們利用光之可逆性,將入射光利用複繞射面直接反射回晶體,這種方式可減少晶體吸收,以提升反射率以及共振效率。
    根據模擬以及實驗結果分析,此兩種方式對於改善共振腔之效率以及能量解析度有顯著之效果,而斜向入射共振腔之效果更為突出,僅透過入射路徑之改變,可使相同結構之共振腔在共振效率(peak efficiency)上提升大約30倍,大幅提升了晶體製程之X光Fabry–Pérot共振腔之實用性。我們可將斜向入射之機制應用於不同能量與不同材料上,期待此元件在未來能應用於高能量解析X光之相關領域研究。


    Hard X-ray Fabry–Pérot resonators using Bragg-back-reflection has been proposed and explored since 1967. The ideas were brought into effect until 2005 when Chang et al. directly observed cavity resonance fringes in a Si crystal with the size of 40~150 μm. The performance of cavities using Si (12 4 0) back diffraction at 14.4388 keV with energy resolution ΔE of 0.36 meV was barely satisfactory for the intrinsic limits of crystal –based resonators from crystal absorption and 24-beam diffractions.
    In this thesis, we proposed two models of resonators to improve the practicability of hard X-ray resonators:
    (1) Using Al2O3 ( 0 0 0 30) back diffraction for X-ray resonators at 14.3148 keV: For its less absorption and hexagonal structure, the resonator of sapphire crys-tals underwent a pure 2-beam diffraction which could enhance the resonance interference and improve finesse compared with the one of silicon crystals.
    (2) Hard X-ray resonators with inclined-incidence geometry:
    Utilizing one of the multiple diffractions as incident beam to generate back dif-fraction in a crystal cavity for resonance and demonstrate FP resonance with ul-trahigh efficiency, highly purified resolving power in the sub-meV range and low background.
    Both the experimental results show clear resonance fringes for the enhance-ment in Finesse and peak efficiency, especially for the inclined incidence, only by changing the path of incidence, the visibility was enhanced nearly 30 times than normal incidence. The compact-sized resonator with these promising fea-tures can be widely implemented to different energies and materials and antici-pated to apply to ultrahigh-resolution X-ray optics for X-ray diffraction, spec-troscopy, and imaging applications.

    第一章 導論 1 第二章 動力繞射理論 3 2.1 X光之多光繞射(X-ray multiple-beam diffraction) 3 2.1.1 布拉格定律(Bragg’s law) 3 2.1.2 X光之複繞射(multiple beam X-ray diffraction) 4 2.1.3 實空間與倒空間之座標轉換 5 2.1.4 旋轉矩陣 6 2.1.5 艾瓦球(Ewald sphere)之建構 7 2.1.6 複繞射與空間群 8 2.1.7 背向繞射及其複繞射 10 2.2 動力繞射理論(Dynamical theory of X-ray diffraction) 11 2.2.1 基本波場方程 12 2.2.2 繞射幾何與晶體內部電場之激發 14 2.2.3 矩陣型基本波場方程式 17 2.2.4 邊界條件 18 2.3 晶體反射率與色散表面模擬結果 22 2.3.1 大角度入射 22 2.3.2 布拉格背向繞射(Bragg back diffraction) 26 第三章 X光Fabry-Perot共振腔 29 3.1 光學共振腔(optical resonators) 31 3.2 X光Fabry–Pérot共振腔(X-ray Fabry-Pérot resonators) 34 3.2.1 X光共振腔發展歷史34 3.2.2 X光共振腔發展之困難 37 3.3 X光Fabry–Pérot共振腔之模擬方法-多層結構計算40 3.4 藍寶石(Al2O3) Fabry–Pérot共振腔之模擬計算45 3.4.1 藍寶石晶體結構 45 3.4.2 背向繞射Al2O3(0 0 0 30)與Si(12 4 0)之比較 46 3.4.3 藍寶石共振腔模擬計算 48 3.5 斜向入射X光Fabry–Pérot共振腔50 3.5.1 斜向入射X光Fabry–Pérot共振腔之模型 50 3.5.2 複繞射光之選擇 52 3.5.3 斜向共振腔之入射幾何 55 3.5.4 布拉格/勞厄斜向入射X光Fabry–Pérot共振腔58 第四章 實驗設施與樣品設計 61 4.1 光束線與實驗設施 61 4.2 高能量解析單光儀(high-resolution monochromator) 63 4.3 樣品設計與製程 67 4.3.1 樣品設計 67 4.3.2 樣品製程 68 4.4 實驗步驟 69 第五章 實驗數據與共振腔模擬分析 71 5.1 藍寶石Al2O3(0 0 0 30)純兩光共振腔之實驗結果71 5.2 斜向入射共振腔之實驗結果 74 5.2.1 實驗數據 74 5.2.2 實驗結果分析與模擬計算 76 5.2.3 共振效率與能量解析度之定性分析 79 5.3 斜向入射共振之模擬 81 5.3.1 斜向入射共振腔產生之條件 81 5.3.2 布拉格斜向共振腔之模擬 81 5.3.3 勞厄斜向共振腔之模擬 88 5.4 三光動力繞射強度修正 93 5.5 高能量解析光束線設計 95 5.5.1 光束線設計 96 5.5.2 HRM-勞厄斜向入射共振腔 97 5.5.3 Analyzer-布拉格斜向入射共振腔 98 第六章 結論 100

    [1] W. L. Bond, M. A. Duguay, and P.M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10,216–218 (1967).
    [2] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot reso-nator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
    [3] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74,134111 (2006).
    [4] S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer, 2004).
    [5] International Tables of Crystallography, Vol.3 3rd edition (IUCr, 2004).
    [6] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2001).
    [7] A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, 2001).
    [8] B. W. Batterman and H. Cole, “Dynamical Diffraction of X Rays by Perfect Crystals,” Rev. Mod. Phys. 36, 681-717 (1964).
    [9] J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, 1999).
    [10] Y. P Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynam-ical X-ray diffraction equations,” Acta Cryst. A53, 28-34 (1997).
    [11] Y.-Y. Chang, Y.-W. Tsai, Y.-H. Wu, M.-T. Tang and S.-L. Chang, “Dynamical diffraction effect in a curved multiple-plate crystal cavity,” Acta Cryst. A68, 729-735 (2012).
    [12] 張櫻議, “X光曲面共振腔在背向繞射下的異常聚焦之研究,” 國立清華大學物理系博士論文(2011).
    [13] Yu. V. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer, 2004).
    [14] M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435 (1971).
    [15] K. Kohra and T. Matsushita, “Some characteristics of dynamical diffraction at a Bragg angles of about π/2,” Z. Naturforsch. A 27, 484-487 (1972)
    [16] O. Brümmer, H. R. Höche and J. Nieber, “X-ray diffraction in the Bragg case at Bragg angles of about π/2,” Phys. Stat. Solidi(a) 53, 565.
    [17] A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Nucl. Instrum. Methods Phys. Res. 195,97 (1982).
    [18] W. Graeff and G. Materlik, “Millielectron volt energy resolution in Bragg backscattering,” Phys. Rev. B 25, 971–983 (1982).
    [19] V.I. Kushnir and E.V. Suvorov, “On the utilization of backscattering (2θ ≈ π) for bright x-ray optics design,” Nuclear Instruments and Methods in Physics Re-search A282, 539-541 (1989).
    [20] C. Cusatic, D. Udron, I. Mazzaro, C. Giles and H. Tolentino,“X-ray Back dif-fraction profiles with a Si (111) plate,” Acta Cryst. A52, 614-620(1996).
    [21] Yu. V. Shvyd’ko, E. Gerdau, J. Jäschke, O. Leupold, M. Lucht and H. D. Rüter, “Exact Bragg backscattering of x-rays,” Phys. Rev. B 57,4968(1998).
    [22] C. Fabry and A. Pérot, “Théorie et applications d´une nouvelle methode de spec-troscopie interférentielle,“ Ann. Chim. Phys. 16, 115–146 (1899).
    [23] J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).
    [24] N. M. Ceglio, D. P. Gaines, J. E. Trebes, R. A. London, and D. G. Stearns, “Time-resolved measurement of double-pass amplification of soft x rays,” Appl. Opt. 27, 5022–5025 (1988).
    [25] R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133–135 (1968).
    [26] A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34, 221–227 (1979).
    [27] R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50, 41–44(1984).
    [28] A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119, 643–654 (1990).
    [29] S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray dif-fraction with a Bragg angle near π/2 and its applications,” Journal of synchrotron radiation 5, 670–672 (1998).
    [30] K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch and R. Tu-coulou, “Storage of x-ray photons in a crystal resonator,” Nature 404, 371 (2000).
    [31] V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fab-ry-Perot interferometer,” Phys. Status Solidi B 221, 597–615 (2000).
    [32] Yu. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt reso-lution,” Phys. Rev. Lett. 90, 013904 (2003).
    [33] Yu. V. Shvyd’ko, E. Gerdau, M. Lerche, H.-C. Wille, E. E. Alp and P. Bexker, “Sapphire X-ray resonator. First experience and results,” Hyp. Interact . (c) 5, 25-28 (2003).
    [34] E. Hecht, Optics, 4th edition(Addison Wesley,2002).
    [35] John P. Sutter, E. Ercan Alp, Michael Y. Hu, Peter L. Lee, Harald Sinn, Wolf-gang Sturhahn, and Thomas S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63,094111 (2001).
    [36] M.-S. Chiu, Yu. P. Stetsko and S.-L. Chang, “Dynamical calxulation for x-ray 24 beam diffraction in a 2-plate crystal cavity of silicon,” Acta Cryst. A64, 304-403(2008).
    [37] X. R. Huang, D. P. Siddons, A. T. Macrander, R.W. Peng, and X. S. Wu, “Mul-ticavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
    [38] 黃亮諭,“藍寶石X光共振腔之可行性研究,” 國立清華大學物理系碩士論文(2009).
    [39] 邱茂森,“X光共振腔之24光動力繞射計算,” 國立清華大學物理系博士論文(2008).
    [40] Y.-H.Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard-X-ray resonator with ultrahigh efficiency and resolu-tion,” Opt. Express 23, 232934 (2015).
    [41]http://www.spring8.or.jp/wkg/BL12XU/instrument/lang/INS-0000000567/instrument_summary_view
    [42] M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72,4080–4083 (2001).
    [43] J. W. M. DuMond, “Theory of the use of more than two successive x-ray crystal reflections to obtain increased resolving power,” Phys. Rev. 52,872-883 (1937).
    [44]許正興,半導體製程技術. http://web.nuu.edu.tw/~hsuch/download/semiconductor_technology3.pdf
    [45] Y.-H. Wu , Y.-W. Tsai, Y.-Y. Chang, C.-H. Chu, D. G. Mikolas, C.-C. Fu, and S.-L. Chang, “Hard X-Ray Resonance in Sapphire Crystal Cavities Using Back Diffrac-tion”, American Physical Society March Meeting, Boston (2012).
    [46] P.-C. Chen, P.-T. Lin, D. G. Mikolas, Y.-W. Tsai, Y.-L. Wang, C.-C. Fu and S.-L. Chang, “Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for X-ray resonant cavities”, J. Micromech. Microeng. 25, 015016 (2015).
    [47] S.-L. Chang, Y.-H. Wu, Y.-W. Tsai, W.-C. Liu, Y.-Y. Chang, S.-L. Chen, “Inclined In-cidence Hard X-Ray Resonators as High-Resolution Beam Conditioners for X-Ray Optics”, International Conference on Synchrotron Radiation Instrumentation SRI 2015, New York (2015).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE