研究生: |
徐偉程 HSU, WEI-CHENG |
---|---|
論文名稱: |
非保角變換下 f(R) 重力的熱力學性質 Thermodynamics of f(R) Gravity with Disformal Relation |
指導教授: |
耿朝強
Geng, Chao-Qiang |
口試委員: |
何小剛
He, Xiao-Gang 張敬民 CHEUNG, KING-MAN 陳泉宏 Chen, Chuan-Hung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 宇宙學 、修正重力理論 、非保角變換 、熱力學 |
外文關鍵詞: | cosmology, disformal, f(R)gravity, thermodynamics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章研究f(R) 重力的熱力學性質以及非保角變換。此一轉換符合γ_μν = A(ϕ,X)*g_μν + B(ϕ,X)*∂_μ{ϕ}∂_ν{ϕ}的形式,且滿足閔考斯基平直時空的假設γ_μν = η_μν。轉換關係中的ϕ 是非保角變換之純量場,而X 則是ϕ 的動能項。FLRW
宇宙的廣義第一及第二熱力學定律可以被推導出。經由非保角變換關係式,哈
伯參數包含物質中的非保角變換場。
We study thermodynamics in f(R) gravity theory with the disformal transformation.The transformation which is applied to the matter Lagrangian has the formγ_μν = A(ϕ,X)*g_μν + B(ϕ,X)*∂_μ{ϕ}∂_ν{ϕ}with the assumption of the Minkowski matter metric γ_μν = η_μν, where ϕ is the disformal scalar and X is the corresponding kinetic term of ϕ. The generalized first and second laws of the thermodynamics in the Friedmann-Lemaître-Robertson-Walker (FLRW) universe could be verified. Through the disformal relation, the Hubble parameter contains the disformal field which defines the effectively varying equation of state for matter.
[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 {1973). doi:10.1103/PhysRevD.7.2333
[2] J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973). doi:10.1007/BF01645742
[3] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) Doi:10.1103/PhysRevLett. 75.1260 [gr-qc/9504004].
[4] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738
[5] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1917, 142 (1917).
[6] R. G. Cai and S. P. Kim, JHEP 0502, 050 (2005) doi: 10.1088/1126-6708/2005/02/050 [hep-th/0501055].
[7] A. G. Riess et al. [Supernova Search Team], Astron. J. 116, 1009 (1998) doi:10.1086/300499 [astro-ph/9805201].
[8] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999) doi:10.1086/307221 [astro-ph/9812133].
[9] C. Eling, R. Guedens and T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006) doi:10.1103/PhysRevLett.96.121301 [gr-qc/0602001].
[10] M. Akbar and R. G. Cai, Phys. Lett. B 635, 7 (2006) doi:10.1016/j.physletb. 2006.02.035 [hep-th/0602156].
[11] M. Akbar and R. G. Cai, Phys. Lett. B 648, 243 (2007) doi: 10.1016/ j.physletb.2007.03.005 [gr-qc/0612089].
[12] S. F. Wu, B. Wang and G. H. Yang, Nucl. Phys. B 799, 330 (2008) doi: 10.1016/j.nuclphysb.2008.01.013 [arXiv:0711.1209 [hep-th]].
[13] S. F. Wu, B. Wang, G. H. Yang and P. M. Zhang, Class. Quant. Grav. 25, 235018 (2008) doi:10.1088/0264-9381/25/23/235018 [arXiv:0801.2688 [hepth]].
[14] K. Bamba and C. Q. Geng, Phys. Lett. B 679, 282 (2009) doi:10.1016/j.physletb.2009.07.039 [arXiv:0901.1509 [hep-th]].
[15] R. G. Cai and L. M. Cao, Phys. Rev. D 75, 064008 (2007) doi:10.1103/PhysRevD.75.064008 [gr-qc/0611071].
[16] K. Bamba, C. Q. Geng and S. Tsujikawa, Phys. Lett. B 688, 101 (2010) doi: 10.1016/j.physletb.2010.03.070 [arXiv:0909.2159 [gr-qc]].
[17] K. Bamba and C. Q. Geng, JCAP 1006, 014 (2010) doi:10.1088/1475-7516/2010/06/014 [arXiv:1005.5234 [gr-qc]].
[18] J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993) doi:10.1103/PhysRevD. 48.3641 [gr-qc/9211017].
[19] N. Kaloper, Phys. Lett. B 583, 1 (2004) doi:10.1016/j.physletb.2004.01.005 [hep-ph/0312002].
[20] R. M. Wald, Phys. Rev. D 48, no. 8, R3427 (1993) doi:10.1103/PhysRevD.48.R3427 [gr-qc/9307038].
[21] V. Iyer and R. M. Wald, Phys. Rev. D 50, 846 (1994) doi:10.1103/PhysRevD.50.846 [gr-qc/9403028].
[22] R. Brustein, D. Gorbonos and M. Hadad, Phys. Rev. D 79, 044025 (2009)doi:10.1103/PhysRevD.79.044025 [arXiv:0712.3206 [hep-th]].