研究生: |
謝宇屏 Yu-Ping Hsieh |
---|---|
論文名稱: |
從微晶片影像探索基因 Gene Discovery from Microarray Images |
指導教授: |
陳朝欽
Chaur-Chin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 微晶片 、基因探索 、基因分析 、正規化 、特徵選取 、分群 |
外文關鍵詞: | Microarray, Gene Discovery, Gene Analysis, Normalization, Feature Selection, Clustering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微晶片相關科技因為能同時研究上萬個基因而廣泛地被各種相關領域的研究人員採用。然而,目前並沒有一個結構化的計算流程存在,從微晶片影像取得開始,可以有效率地探索有研究價值的基因。因此,本篇論文提出了一個計算模組,從微晶片影像計算出基因表現量、正規化校正螢光色差、到找出最有表現的基因以及最能分辨不同特徵病人的基因。
我們比較由我們提出的自動計算基因表現量方法的結果和商用微晶片分析軟體計算的結果,有90.9%的相關係數大於0.5。無法有效提高相關係數的原因在於部分微晶片影像品質不佳。再比較由我們提出的正規化校正色差方法與LOWESS校正方法,也有90.9%的相關係數大於0.9。實驗結果顯示我們的計算模組實用且有效率,可提供微晶片相關計算暨定量檢驗研究的的參考,並對後續臨床診斷與基因分析有助益。
Novel biological technology based on microarray experiments has been extensively applied by various fields of researches due to the utility of microarray capable of investigating tens thousands of genes simultaneously.
However, gene analysis lacks an organized process to effectively discover crucial genes from image acquisition.
Therefore, one computation model was developed to obtain the most differentially expressed genes and the most discriminative genes. We started gene discovery from computing gene expression levels of 44 microarray images by the Otsu thresholding method. Next, the ratios of Cy3 and Cy5 fluorescence intensities of tumor and normal samples respectively of each spot were normalized based on piecewise linear regression method. Finally, thresholding strategies and feature selection methods were utilized to acquire significant genes, accompanied by clustering algorithms to verify the suitability of the selected genes.
Ninety percent of correlation coefficients between our computing data sets of gene expression levels and the ones generated by commercial software (ArrayPro Analyzer) were larger than 0.5. Ninety percent of correlation coefficients between the data sets of our normalized log-ratios and those normalized by LOWESS regression method had values larger than 0.9. These results suggest that our computational model is practical and efficient.
Results in this thesis provide informative materials of computational and quantitative examination for microarray-related research and facilitate clinical diagnosis and gene analysis.
\bibitem [Alt00] {kn:Alt00} O. Alter, P. O. Brown, D. Botstein, "Singular Value Decomposition for Genome-Wide Expression
Data Processing and Modeling", {\em Journal of Proceedings of the
National Academy of Sciences of the United States of America},
vol. 97, no. 18, 10101-10106, 2000.
\bibitem [Angio] {kn:Angio}
Angiogenesis Reaserach Center, NTU, Taiwan.\\
(http://angio.bioinfo.ntu.edu.tw).
\bibitem [Array] {kn:Array}
Array-Pro Analyzer microarray analysis software, high-density
array microarray software for DNA chip analysis. \\
(http://www.mediacy.com/arraypro.htm).
\bibitem [Bra01] {kn:Bra01} A. Brazma, P. Hingamp, J. Quackenbush, et al., "Minimum information about a microarray
experiment (MIAME)-toward standards for microarray data", {\em
Journal of Nature Genetics}, vol. 29, 365-371, 2001.
\bibitem [Cha02] {kn:Cha02} D. Chaussabel and A. Sher, "Mining microarray expression data by literature profiling", {\em
Genome Biology}, 2002, 3:research0055.1-0055.16.
\bibitem [Che02] {kn:Che02} X. Chen, S.T. Cheung, S. So, et al., "Gene Expression Patterns in Human Liver
Cancers", {\em Journal of Molecular Biology of the Cell}, vol. 13,
1929-1939, 2002.
\bibitem [Chu03] {kn:Chu03} H.Y. Chuang, H.K. Tsai, Y.F. Tsai and C.Y. Kao, "Ranking Genes for Discriminability on Microarray Data",
{\em Journal of Information Science and Engineering}, vol. 19, 953-966, 2003.
\bibitem [Chu04] {kn:Chu04} H.Y. Chuang, H.F. Liu, S. Brown, et al., "Identifying Significant Genes from Microarray Data",
{\em Proceedings of Fourth IEEE Symposium on Bioinformatics and Bioengineering}, 358-365, 2004.
\bibitem [DNA] {kn:DNA} DNA Microarray Methodology - Flash Animation. \\
(http://www.bio.davidson.edu/courses/genomics/chip/chip.html).
\bibitem [Dud01] {kn:Dud00} R. O. Duda, P. E. Hart, D. G. Stork,
"Pattern Classification",
A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 2001.
\bibitem [Dud02] {kn:Dud02} S. Dudoit, Y.H. Yang, M. J. Callow and T. P. Speed,
"Statistical Methods for Identifying Differentially Expressed Genes in
Replicated cDNA Microarray Experiments", {\em Statistica Sinica}, 12(2002), 111-139.
%\bibitem [Gen] {kn:Gen} GenePix Pro microarray scanning and analysis software. \\
%(http://www.axon.com/gn\_GenePixSoftware.html).
\bibitem [Gon02] {kn:Gon02} R. C. Gonzalez, R. E. Woods, "Digital Image Processing, 2/E", Prentice-Hall, Inc.,
New Jersey, 2002.
\bibitem [Iiz02] {kn:Iiz02} N. Iizuka, M. Oka, H. Yamada-Okabe, et al., "Comparison of Gene Expression Profiles between Hepatitis B Virus- and Hepatitis C Virus-infected
Hepatocellular Carcinoma by Oligonucleotide Microarray Data on the
Basis of a Supervised Learning Method", {\em Journal of Cancer
Research}, vol. 62, 3939-3944, 2002.
\bibitem [Kha01] {kn:Kha01} J. Khan, J. S. Wei1, M. Ringner, et al., "Classification and diagnostic prediction of cancers using gene expression profiling
and artificial neural networks", {\em Journal of Nature Medicine},
vol. 7, no. 6, 673-679, 2001.
\bibitem [Koh90] {kn:Koh90} T. Kohonen, "The Self-organizing Map", {\em Proceedings of IEEE}, vol. 78, no. 9, 1464-1480, 1990.
\bibitem [Lai04] {kn:Lai04} D. Lai, "A Study on Microarray Image Pattern Analysis",
M.S. Thesis, Department of Computer Science, NTHU, Taiwan, 2004.
\bibitem [Oka01] {kn:Oka01} H. Okabe, S. Satoh, T. Kato, et al.,
"Genome-wide Analysis of Gene Expression in Human Hepatocellular
Carcinomas Using cDNA Microarray: Identification of Genes Involved
in Viral Carcinogenesis and Tumor Progression", {\em Journal of
Cancer Research}, vol. 61, 2129-2137, 2001.
\bibitem [Ots79] {kn:Ots79} N. Otsu, "A Threshold Selection Method from Gray-Level Histograms",
{\em Journal of IEEE Transactions on Systems, Man, and Cybernetics}, vol. SMC-9, no.1, 62-66, 1979.
\bibitem [Ros00] {kn:Ros00} D. T. Ross, U. Scherf, M. B. Eisen, et al.,
"Systematic variation in gene expression patterns in human cancer
cell lines", {\em Journal of Nature Genetics}, vol. 24, no. 3,
227-235, 2000.
%\bibitem [Whi71] {kn:Whi71} A. Whitney, "A direct method of nonparametric measurement selection",
%{\em IEEE Trans. Comput.}, vol. 20, 1100-1103, 1971.
\bibitem [Whi03] {kn:Whi03} A. R. Whitney, M. Diehn, S. J. Popper, et al.,
"Individuality and variation in gene expression patterns in human
blood", {\em Proceedings of the National academy of Sciences of
the United States of America}, vol. 100, no. 4, 1896-1901, 2003.
\bibitem [Yan01] {kn:Yan} Y.H. Yang, S. Dudoit, P. Luu, T. P. Speed,
"Normalization for cDNA Microarray Data", {\em SPIE BiOS 2001},
San Jose, California, 2001.