簡易檢索 / 詳目顯示

研究生: 錢宇
Qian,Yu
論文名稱: 製備具有pH響應性的無定型碳酸鈣載體於雙藥物傳遞之應用
A Facile Strategy to Prepare pH-Responsive Amorphous Calcium Carbonate Nanoparticles for Co-Drug Delivery
指導教授: 黃郁棻
Huang,Yu Fen
口試委員: 林宗宏
胡尚秀
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 無定型碳酸鈣奈米金粒子阿霉素癌症治療吲哚菁綠
外文關鍵詞: amorphous calcium carbonate, gold nanoparticles, doxorubicin, cancer therapy, indocyanine green
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無定型碳酸鈣 (Amorphous calcium carbonate, ACC)是一種天然無毒性的生物礦物,具有pH響應性,生物相容性高,化學成分簡單,製備成本低且易於大規模生產等諸多優點,在生物醫學方面極具應用潛力,可作為藥物載體進行開發。然而,ACC在水溶液中易於溶解和結晶等不穩定因素,限制了此材料在奈米藥物載體方面的未來發展性,因此需要額外添加保護劑對其進行保護。本研究通過簡單的氣相擴散反應,在乙醇溶液中成功合成出了同時載負阿霉素 (Doxorubicin, DOX)與吲哚菁綠 (Indocyanine green, ICG)的ACC奈米藥物載體,其載負率分別為94%和98%,粒徑為46 nm。為維持其水相穩定性,實驗以聚乙烯吡咯烷酮 (Polyvinyl pyrrolidone, PVP)吸附在其表面抑制其結晶,再以植酸 (Phytic acid, IP6)形成Ca-IP6殼層,得到粒徑為78 nm的奈米複合體,并藉由XRD偵測獲知其仍維持ACC形式。進而通過鹽酸羥胺 (Hydroxylamine hydrochloride)還原四氯金酸 (Hydrogen tetrachloroaurate),在奈米複合體表面緊密修飾上小粒徑 (15 nm)的金奈米粒子, 這些表面修飾的金奈米粒子不僅可以通過巰基修飾的聚乙二醇 (Thiol Polyethylene glycol, PEG-SH) 使其在生理環境下穩定存在,還可以通過其光熱響應特性增強近紅外光熱療。總之,一個具有pH響應特性的雙藥物控制釋放系統被成功的建立並且在腫瘤細胞治療方面得到應用。


    Amorphous calcium carbonate (ACC), as a naturally nontoxic biomineral, shows great potential for biomedical applications, with intrinsic advantages of pH-dependent degradability, biocompatibility, simple chemical composition, as well as low cost and ease of large-scale production. However, the major obstacle to develop ACC nanoparticles as a pH-responsive nanomedicine is the high aqueous instability of ACC including its ease of dissolution and phase transition. Herein, an alcoholic suspension of ACC nanoparticles preloaded with doxorubicin (DOX) and indocyanine green (ICG) was obtained using a simple vapor-diffusion process. To preserve their stability while retaining their pH-responsiveness, polypyrrolidone (PVP) and phytic acid (IP6) were introduced to protect the ACC from unexpected crystallization in aqueous environment. The surface of the resulting nanoparticles was further covered with closely packed small Au nanoparticles via hydroxylamine reduction of HAuCl4. The surface coating of Au nanoparticles not only facilitated specific PEGylation through thiol linkages but also the photothermal response in the near-infrared tissue optical window. Overall, a co-drug delivery platform with pH-responsive release capability was successfully established to improve the therapeutic efficacy in tumor cells.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1癌症與治療 1 1.1.1癌症簡介 1 1.1.2癌症治療 1 1.1.3化學藥物治療 2 1.1.4熱療 3 1.1.5熱療與化療的聯合治療 6 1.2奈米科學與生醫應用 7 1.2.1奈米藥物載體 7 1.2.2奈米藥物載體與癌症治療 9 1.2.3奈米藥物載體的刺激響應性 10 1.3碳酸鈣 11 1.3.1碳酸鈣的概述 11 1.3.2無定形碳酸鈣的概述 14 1.3.3無定形碳酸鈣的結晶轉變 16 1.3.4碳酸鈣在生物醫學領域中的研究現狀 19 1.4研究動機與目的 21 第二章 實驗材料與方法 24 2.1 實驗藥品與儀器 24 2.1.2 實驗藥品 24 2.1.2 緩衝溶液配置 26 2.1.3 細胞培養與操作 27 2.1.4 儀器 27 2.2 無定型碳酸鈣奈米粒子的合成與藥物載負 29 2.2.1 無定型碳酸鈣奈米粒子合成 29 2.2.2無定型碳酸鈣奈米粒子的藥物載負 29 2.2.3無定型碳酸鈣奈米粒子與無定型碳酸鈣奈米藥物載體的特性鑒定 30 2.2.4無定型碳酸鈣奈米藥物載體的藥物載負率測定 30 2.3奈米藥物載體的修飾與水相穩定性 31 2.3.1奈米藥物載體的修飾 31 2.3.2奈米藥物載體的鑒定 32 2.3.3不同pH值下的藥物釋放分析 32 2.3.4藥物載體的升溫效果分析 33 2.4奈米藥物載體與目標細胞的作用 33 2.4.1細胞存活率分析 33 2.4.2螢光顯微鏡分析細胞內藥物釋放 34 第三章 實驗結果與討論 36 3.1 無定型碳酸鈣奈米粒子的合成與藥物載負 36 3.1.1 無定型碳酸鈣奈米粒子合成與鑒定 36 3.1.2無定型碳酸鈣奈米藥物載體的合成與鑒定 37 3.2奈米藥物載體的修飾與水相穩定性 38 3.2.1奈米藥物載體的修飾與轉相 38 3.2.2金奈米粒子的修飾 40 3.2.3不同pH值下的藥物釋放分析 42 3.2.4藥物載體的升溫效果分析 43 3.3奈米藥物載體與目標細胞的作用 43 3.3.1細胞存活率分析 43 3.3.2螢光顯微鏡分析細胞內藥物釋放 44 第四章 結論 46 圖表說明 47 參考文獻 64

    1. Weber, C. E.; Kuo, P. C., The tumor microenvironment. Surgical Oncology 2012, 21 (3), 172-177.
    2. Gatenby, R. A.; Gillies, R. J., Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 2004, 4 (11), 891-899.
    3. Van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J.-P.; Gillies, R. J., In vivo imaging of extracellular pH using 1 H MRSI. Magnetic Resonance in Medicine 1999, 41 (4), 743-750.
    4. Miller, A.; Hoogstraten, B.; Staquet, M.; Winkler, A., Reporting results of cancer treatment. Cancer 1981, 47 (1), 207-214.
    5. Noordijk, E.; Clement, E. P.; Hermans, J.; Wever, A.; Leer, J., Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiotherapy and Oncology 1988, 13 (2), 83-89.
    6. Vetvicka, D.; Hruby, M.; Hovorka, O.; Etrych, T.; Vetrik, M.; Kovar, L.; Kovar, M.; Ulbrich, K.; Rihova, B., Biological evaluation of polymeric micelles with covalently bound doxorubicin. Bioconjugate Chemistry 2009, 20 (11), 2090-2097.
    7. Ullah, M. F., Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev 2008, 9 (1), 1-6.
    8. Young, R. C.; Ozols, R. F.; Myers, C. E., The anthracycline antineoplastic drugs. New England Journal of Medicine 1981, 305 (3), 139-153.
    9. Carr, B. I., Hepatocellular carcinoma: current management and future trends. Gastroenterology 2004, 127 (5), S218-S224.
    10. Cid, R. A. P.; Lao, J.; Lanzuela, M., Doxorubicin plus sorafenib in treatment of advanced hepatocellular carcinoma. JAMA 2011, 305 (8), 781-781.
    11. Singal, P.; Iliskovic, N.; Li, T.; Kumar, D., Adriamycin cardiomyopathy: pathophysiology and prevention. The FASEB Journal 1997, 11 (12), 931-936.
    12. Kim, D. W.; Kim, K.-O.; Shin, M. J.; Ha, J. H.; Seo, S. W.; Yang, J.; Lee, F. Y., siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells. Molecular Cancer 2009, 8 (1), 1.
    13. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H., The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 2002, 43 (1), 33-56.
    14. O'neill, K.; Fairbairn, D.; Smith, M.; Poe, B., Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell lines. Apoptosis 1998, 3 (5), 369-375.
    15. Prasad, N.; Rathinasamy, K.; Panda, D.; Bahadur, D., Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-Mn x Fe 2–x O 3 synthesized by a single step process. Journal of Materials Chemistry 2007, 17 (48), 5042-5051.
    16. Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G., Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
    17. Saxena, V.; Sadoqi, M.; Shao, J., Degradation kinetics of indocyanine green in aqueous solution. Journal of Pharmaceutical Sciences 2003, 92 (10), 2090-2097.
    18. Zerda, A. d. l.; Liu, Z.; Bodapati, S.; Teed, R.; Vaithilingam, S.; Khuri-Yakub, B. T.; Chen, X.; Dai, H.; Gambhir, S. S., Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano letters 2010, 10 (6), 2168-2172.
    19. Landsman, M.; Kwant, G.; Mook, G.; Zijlstra, W., Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of Applied Physiology 1976, 40 (4), 575-583.
    20. Imai, T.; Takahashi, K.; Fukura, H.; Morishita, Y., Measurement of Cardiac Output by Pulse Dye Densitometry Using Indocyanine Green A Comparison with the Thermodilution Method. The Journal of the American Society of Anesthesiologists 1997, 87 (4), 816-822.
    21. Lindner, E.; Weinberger, A.; Kirschkamp, T.; El-Shabrawi, Y.; Barounig, A., Near-infrared autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Ophthalmologica 2011, 227 (1), 34-38.
    22. Motomura, K.; Inaji, H.; Komoike, Y.; Kasugai, T.; Noguchi, S.; Koyama, H., Sentinel node biopsy guided by indocyanin green dye in breast cancer patients. Japanese Journal of Clinical Oncology 1999, 29 (12), 604-607.
    23. Barth, B. M.; I. Altinoğlu, E.; Shanmugavelandy, S. S.; Kaiser, J. M.; Crespo-Gonzalez, D.; DiVittore, N. A.; McGovern, C.; Goff, T. M.; Keasey, N. R.; Adair, J. H., Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 2011, 5 (7), 5325-5337.
    24. Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L., Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7 (3), 2056-2067.
    25. Taichman, G. C.; Hendry, P. J.; Keon, W. J., The use of cardio-green for intraoperative visualization of the coronary circulation: evaluation of myocardial toxicity. Texas Heart Institute Journal 1987, 14 (2), 133.
    26. Sheng, Z.; Hu, D.; Xue, M.; He, M.; Gong, P.; Cai, L., Indocyanine green nanoparticles for theranostic applications. Nano-Micro Letters 2013, 5 (3), 145-150.
    27. Matsuda, T., The present status of hyperthermia in Japan. Annals of the Academy of Medicine, Singapore 1996, 25 (3), 420-424.
    28. Ohtsubo, T.; Saito, H.; Tanaka, N.; Matsumoto, H.; Sugimoto, C.; Saito, T.; Hayashi, S.; Kano, E., Enhancement of cisplatin sensitivity and platinum uptake by 40 C hyperthermia in resistant cells. Cancer Letters 1997, 119 (1), 47-52.
    29. Issels, R. D., Hyperthermia adds to chemotherapy. European Journal of Cancer 2008, 44 (17), 2546-2554.
    30. Witkamp, A. J.; de Bree, E.; Van Goethem, R.; Zoetmulder, F. A., Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy. Cancer Treatment Reviews 2001, 27 (6), 365-374.
    31. Nooijen, P. T.; Eggermont, A. M.; Schalkwijk, L.; Henzen-Logmans, S.; de Waal, R. M.; Ruiter, D. J., Complete response of melanoma-in-transit metastasis after isolated limb perfusion with tumor necrosis factor α and melphalan without massive tumor necrosis: A clinical and histopathological study of the delayed-type reaction pattern. Cancer Research 1998, 58 (21), 4880-4887.
    32. Eggermont, A.; Koops, H. S.; Liénard, D.; Kroon, B.; van Geel, A. N.; Hoekstra, H. J.; Lejeune, F. J., Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. Journal of Clinical Oncology 1996, 14 (10), 2653-2665.
    33. Danhier, F.; Feron, O.; Préat, V., To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release 2010, 148 (2), 135-146.
    34. Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R., Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters 2010, 10 (9), 3223-3230.
    35. Maeda, H.; Bharate, G.; Daruwalla, J., Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics 2009, 71 (3), 409-419.
    36. Dinarvand, R.; Sepehri, N.; Manoochehri, S.; Rouhani, H.; Atyabi, F., Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 2011, 6, 877-895.
    37. Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y., Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research 1994, 54 (4), 987-992.
    38. Barenholz, Y. C., Doxil®—the first FDA-approved nano-drug: lessons learned. Journal of Controlled Release 2012, 160 (2), 117-134.
    39. Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.-J., pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances 2014, 32 (4), 693-710.
    40. Chen, Y.; Bose, A.; Bothun, G. D., Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 2010, 4 (6), 3215-3221.
    41. Zhou, C.; Chen, T.; Wu, C.; Zhu, G.; Qiu, L.; Cui, C.; Hou, W.; Tan, W., Aptamer CaCO3 Nanostructures: A Facile, pH‐Responsive, Specific Platform for Targeted Anticancer Theranostics. Chemistry–An Asian Journal 2015, 10 (1), 166-171.
    42. Choi, C.-S.; Kim, Y.-W., A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 2000, 21 (3), 213-222.
    43. Liu, Y.; Cui, Y.; Mao, H.; Guo, R., Calcium carbonate crystallization in the presence of casein. Crystal Growth & Design 2012, 12 (10), 4720-4726.
    44. Kim, S.; Park, C. B., Bio‐Inspired Synthesis of Minerals for Energy, Environment, and Medicinal Applications. Advanced Functional Materials 2013, 23 (1), 10-25.
    45. Boyjoo, Y.; Pareek, V. K.; Liu, J., Synthesis of micro and nano-sized calcium carbonate particles and their applications. Journal of Materials Chemistry A 2014, 2 (35), 14270-14288.
    46. Ouyang, J., The modulation and application of matrix in biomimetic mineralization. Beijing: Chemical Industry Press: 2006.
    47. Price, G. J.; Mahon, M. F.; Shannon, J.; Cooper, C., Composition of calcium carbonate polymorphs precipitated using ultrasound. Crystal Growth & Design 2010, 11 (1), 39-44.
    48. Addadi, L.; Raz, S.; Weiner, S., Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials 2003, 15 (12), 959-970.
    49. Braga, D., From Amorphous to Crystalline by Design: Bio‐Inspired Fabrication of Large Micropatterned Single Crystals. Angewandte Chemie International Edition 2003, 42 (45), 5544-5546.
    50. Raz, S.; Hamilton, P. C.; Wilt, F. H.; Weiner, S.; Addadi, L., The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Advanced Functional Materials 2003, 13 (6), 480-486.
    51. Ajikumar, P. K.; Wong, L. G.; Subramanyam, G.; Lakshminarayanan, R.; Valiyaveettil, S., Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Crystal growth & design 2005, 5 (3), 1129-1134.
    52. Song, F.; Soh, A.; Bai, Y., Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24 (20), 3623-3631.
    53. Ogino, T.; Suzuki, T.; Sawada, K., The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta 1987, 51 (10), 2757-2767.
    54. Tang, H.; Yu, J.; Ng, D. H., PSSS‐controlled synthesis of CaCO3 superstructures. Crystal Research and Technology 2007, 42 (9), 856-861.
    55. Lam, R. S.; Charnock, J. M.; Lennie, A.; Meldrum, F. C., Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm 2007, 9 (12), 1226-1236.
    56. Koga, N.; Nakagoe, Y.; Tanaka, H., Crystallization of amorphous calcium carbonate. Thermochimica Acta 1998, 318 (1), 239-244.
    57. Brečević, L.; Nielsen, A. E., Solubility of amorphous calcium carbonate. Journal of Crystal Growth 1989, 98 (3), 504-510.
    58. Ihli, J.; Wong, W. C.; Noel, E. H.; Kim, Y.-Y.; Kulak, A. N.; Christenson, H. K.; Duer, M. J.; Meldrum, F. C., Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Communications 2014, 5.
    59. Politi, Y.; Levi‐Kalisman, Y.; Raz, S.; Wilt, F.; Addadi, L.; Weiner, S.; Sagi, I., Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos. Advanced Functional Materials 2006, 16 (10), 1289-1298.
    60. Weiss, I. M.; Tuross, N.; Addadi, L.; Weiner, S., Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology 2002, 293 (5), 478-491.
    61. Hasse, B.; Ehrenberg, H.; Marxen, J. C.; Becker, W.; Epple, M., Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chemistry-Weinheim-European Journal- 2000, 6 (20), 3679-3685.
    62. Becker, A.; Bismayer, U.; Epple, M.; Fabritius, H.; Hasse, B.; Shi, J.; Ziegler, A., Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Transactions 2003, (4), 551-555.
    63. Lee, H. S.; Ha, T. H.; Kim, K., Fabrication of unusually stable amorphous calcium carbonate in an ethanol medium. Materials Chemistry and Physics 2005, 93 (2), 376-382.
    64. Faatz, M.; Gröhn, F.; Wegner, G., Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Advanced Materials 2004, 16 (12), 996-1000.
    65. Günther, C.; Becker, A.; Wolf, G.; Epple, M., In vitro synthesis and structural characterization of amorphous calcium carbonate. Zeitschrift für anorganische und allgemeine Chemie 2005, 631 (13‐14), 2830-2835.
    66. Chen, S.-F.; Cölfen, H.; Antonietti, M.; Yu, S.-H., Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chemical Communications 2013, 49 (83), 9564-9566.
    67. Zou, Z.; Bertinetti, L.; Politi, Y.; Jensen, A. C.; Weiner, S.; Addadi, L.; Fratzl, P.; Habraken, W. J., Opposite Particle Size Effect on Amorphous Calcium Carbonate Crystallization in Water and during Heating in Air. Chemistry of Materials 2015, 27 (12), 4237-4246.
    68. Hild, S.; Marti, O.; Ziegler, A., Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. Journal of Structural Biology 2008, 163 (1), 100-108.
    69. Xu, X.; Han, J. T.; Kim, D. H.; Cho, K., Two modes of transformation of amorphous calcium carbonate films in air. The Journal of Physical Chemistry B 2006, 110 (6), 2764-2770.
    70. Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jäger, C.; Cölfen, H., Amorphous layer around aragonite platelets in nacre. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (36), 12653-12655.
    71. Liu, Y.; Cui, Y.; Guo, R., Amphiphilic phosphoprotein-controlled formation of amorphous calcium carbonate with hierarchical superstructure. Langmuir 2012, 28 (14), 6097-6105.
    72. Xu, A. W.; Yu, Q.; Dong, W. F.; Antonietti, M.; Cölfen, H., Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid. Advanced Materials 2005, 17 (18), 2217-2221.
    73. Huang, S.-C.; Naka, K.; Chujo, Y., A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly (acrylic acid) s. Langmuir 2007, 23 (24), 12086-12095.
    74. Wei, W.; Ma, G.-H.; Hu, G.; Yu, D.; Mcleish, T.; Su, Z.-G.; Shen, Z.-Y., Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. Journal of the American Chemical Society 2008, 130 (47), 15808-15810.
    75. Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X., pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 2015, 9 (1), 134-145.
    76. Cheang, T.-y.; Wang, S.-m.; Hu, Z.-j.; Xing, Z.-H.; Chang, G.-q.; Yao, C.; Liu, Y.; Zhang, H.; Xu, A.-W., Calcium carbonate/CaIP 6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells. Journal of Materials Chemistry 2010, 20 (37), 8050-8055.
    77. Zhao, Y.; Luo, Z.; Li, M.; Qu, Q.; Ma, X.; Yu, S. H.; Zhao, Y., A Preloaded Amorphous Calcium Carbonate/Doxorubicin@ Silica Nanoreactor for pH‐Responsive Delivery of an Anticancer Drug. Angewandte Chemie International Edition 2015, 54 (3), 919-922.
    78. Shi, H.; Li, L.; Zhang, L.; Wang, T.; Wang, C.; Zhu, D.; Su, Z., Designed preparation of polyacrylic acid/calcium carbonate nanoparticles with high doxorubicin payload for liver cancer chemotherapy. CrystEngComm 2015, 17 (26), 4768-4773.
    79. Zhao, D.; Liu, C.-J.; Zhuo, R.-X.; Cheng, S.-X., Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Molecular Pharmaceutics 2012, 9 (10), 2887-2893.
    80. Wang, J.; Chen, J.-S.; Zong, J.-Y.; Zhao, D.; Li, F.; Zhuo, R.-X.; Cheng, S.-X., Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. The Journal of Physical Chemistry C 2010, 114 (44), 18940-18945.
    81. Zhao, Y.; Lu, Y.; Hu, Y.; Li, J. P.; Dong, L.; Lin, L. N.; Yu, S. H., Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. Small 2010, 6 (21), 2436-2442.
    82. Kheirolomoom, A.; Mahakian, L. M.; Lai, C.-Y.; Lindfors, H. A.; Seo, J. W.; Paoli, E. E.; Watson, K. D.; Haynam, E. M.; Ingham, E. S.; Xing, L., Copper− Doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Molecular Pharmaceutics 2010, 7 (6), 1948-1958.
    83. Wei, H.; Shen, Q.; Zhao, Y.; Wang, D.-J.; Xu, D.-F., Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite. Journal of Crystal Growth 2003, 250 (3), 516-524.
    84. Wang, R.; Ji, X.; Huang, Z.; Xue, Y.; Wang, D.; Yang, W., Citrate-Regulated Surface Morphology of SiO2@ Au Particles To Control the Surface Plasmonic Properties. The Journal of Physical Chemistry C 2015, 120 (1), 377-385.
    85. Kuo, W.-S.; Chang, Y.-T.; Cho, K.-C.; Chiu, K.-C.; Lien, C.-H.; Yeh, C.-S.; Chen, S.-J., Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33 (11), 3270-3278.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE