簡易檢索 / 詳目顯示

研究生: 陳明宏
Chen, Ming-Hung
論文名稱: 仿生超疏水奈微米結構表面製造與分析及其於可逆式微液珠電致操控之應用
Preparation and Analysis of Biomimic Superhydrophobic Surface and its Application on Reversible Electro Microdroplet Manipulation
指導教授: 曾繁根
Tseng, Fan-Gang
錢景常
Chieng, Ching-Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 超疏水仿生電潤濕多重尺度結構奈米絲
外文關鍵詞: Superhydrophobic, Biomimic, Electrowetting, Multi-length scale structure, Nanopillars
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究之目的在於利用仿生的觀點來進行結構引發超疏水表面之製作、分析及其電製微流體操控之應用。本研究成功發展一套電漿蝕刻引發自我成型之高分子奈米絲成形技術,免除傳統製作奈米結構時的奈米微影需求,以不須歷經在無機奈米絲製程下的高溫條件,具有極佳的奈微機電製程整合彈性。藉由荷葉仿生之概念成功並配合微米結構之製程,製作出具有奈微米尺度複合結構仿生超疏水表面,其極佳之超疏水特性(接觸角 > 155度)與極低的遲滯角(遲滯角 < 10度),堪與荷葉表面相仿。就應用面而言,液珠在此超疏水表面之動態過程的現象闡述與分析更形重要,然而受限於結構製備之限制尚無充分的研究,有鑑於此,研究中藉由液珠衝擊試驗來探討液珠與多重尺度結構表面之間接觸角時變關係與形貌變化,並分析其複合尺度結構所存在之多重介穩態與階層結構間潤濕過程所存在之能障。為改善自我成型奈米結構之材料機械特性與提升材料表面之本質接觸角,以提升超疏水表面於後續應用上之穩定度,繼而探討利用Parylene-C高分子氣相沉積以強化結構並建置一套鐵氟龍疏水材料霧化噴塗系統,在維持表面奈米結構之形貌為前提下,分析證實其表面疏水特性有顯著之改善,其接觸角可進一步達到165度而遲滯可大幅降低至3度以下。
    在應用方面,吾人嘗試將此一仿生超疏水表面整合應用至電潤濕微流體控制系統中以探討其電致動之過程,結果顯示液珠可以在配合有Parylene-C結構強化與鐵氟龍疏水修飾之奈米結構表面成功進行可逆式電潤濕之原位致動與橫向移動,其最大之接觸角改變量可達~50度(電壓條件:150 Vac)。


    The purpose of this dissertation is to develop and analyze a biomimic texture-induced superhydrophobic (SHP) surface as well as applied to the manipulation of electro-induced microfluidic systems. In this study, a novel fabrication of self-forming high-aspect-ratio polymer nanopillars under reactive ion etching (RIE) process was proposed in which the fabrication process need neither nano-lithography definition nor catalyst pre-forming during inorganic growing and showed a highly integration flexibility of other N/MEMS fabrication processes. Based on lotus leaf biomimic, a SHP surface with multi-length scale was successfully constructed and the contact angle (CA) can be larger than 155o and the contact angle hysteresis (CAH) can be less than 10o which was similar to the properties of real lotus leaf. In the application aspect, it is more important of the phenomena description and theoretical study of the dynamic process on such a hierarchical SHP surface. Due to the limitation of the preparation of hierarchical SHP surface, however, the study of droplet dynamic impinging to the surface was still insufficient. As a result, the free fall droplet impinging test onto SHP surface was observed and analyzed in droplet deformation and time-varied CA so as to categorized the three wetting schemes: non-wetting, micro-wetting, and nano-wetting and the textured-induced energy barriers were estimated. In order to improve the SHP stability, Parylene-C coating and Teflon spray coating were utilized to increase the rigidity and intrinsic CA of polymer nanopillars. The result shows a better SHP surface with higher CA (~165o) and lower CAH (<3o). For further application, the biomimic SHP surface was integrated with electro-induced microfluidic manipulation system and demonstrated a reversible actuation of in-situ droplet deformation and lateral moving on nanopillars SHP surface. The contact angle decrease can up to 50o under voltage applied of 150 Vac.

    目 錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2.1 接觸角定義 3 2.1.1 表面自由能 3 2.1.2 Young’s equation 3 2.1.3 Wenzel model 4 2.1.4 Cassie model 5 2.1.5 遲滯效應 7 2.1.6 超疏水表面 9 2.2 超疏水表面製備 10 2.2.1 表面改質技術 10 2.2.2 奈微製程結構成形法 11 2.2.3 化學合成法 12 2.2.4 自組裝結構 14 2.2.5超疏水表面製備技術比較 15 2.3 電潤濕技術 16 2.4 電潤濕在超疏水表面之操作 22 第三章 實驗設備 24 3.1製程設備 24 3.1.1 黃光製程 24 3.1.2 電子束金屬層蒸鍍 26 3.1.3 Parylene-C高分子氣相沉積 26 3.1.4 反應式電漿離子蝕刻系統 28 3.2 分析儀器 29 3.2.1 表面輪廓分析儀 29 3.2.2 場發射電子顯微鏡 29 3.2.3 接觸角分析儀 30 3.2.4 XPS高解析電子能譜儀 31 3.2.5 奈米級歐傑電子能譜儀 32 3.2.6 高速攝影機 32 第四章 結構引發超疏水表面之製備與分析 33 4.1師法自然─以荷葉為模板的奈米模造(Nano-molding)製程與分析 33 4.2 仿生超疏水結構之設計概念 38 4.3 微米結構製作 39 4.3.1光阻微米結構 39 4.3.2 矽微米結構 41 4.4 奈米結構製作─自我成形之高分子奈米絲 46 4.4.1表面成分組成與分布之分析 49 4.4.2 奈米結構之空間分布與不同蝕刻時間之探討 54 4.4.3 自我成型奈米絲之成型原理 57 4.4.4 應用自我成型奈米絲結構製程於其他高分子材料 59 4.5 整合奈/微米結構之製程策略與疏水性分析 60 第五章 奈/微米尺度超疏水仿生表面液珠衝擊測試及其能態分析 68 5.1 超疏水表面的液珠衝擊實驗 68 5.2 多重尺度表面能態之分析 73 第六章 具超疏水表面之電潤濕晶片製作及結果比較 77 6.1 電潤濕觀測系統與訊號控制系統介紹 77 6.2 奈米結構強度的改善 83 6.3 應用於結構化表面修飾之疏水層製備技術 85 6.4 電潤濕制動效果於不同結構表面操縱之比較 88 6.5 可逆式電潤濕於奈米結構表面之分析 89 6.5.1原位致動之探討與分析 89 6.5.2 橫向致動探討之印證 91 第七章 結論 94 第八章 未來展望 95 參考文獻 96 附錄A 103 圖目錄 圖2.1 理想表面上接觸角定義與三相平衡關係 4 圖2.2 粗糙表面上接觸角定義:Wenzel model 5 圖2.3 粗糙表面上接觸角定義:Cassie model 6 圖2.4 前進接觸角與後退接觸角的定義 7 圖2.5 PDMS翻模後之微結構 11 圖2.6 PMMA與FPU的成形示意圖 12 圖2.7 利用PMMA與FPU在溶劑中的固化形成複合性結構 13 圖2.8 Alkylketene dimmer (AKD)固化過程所形成之複合表面 13 圖2.9 非等相性碳管排列所形成之超疏水表面 14 圖2.10 木莓結構(raspberry)製備示意圖 15 圖2.11 電潤濕效應 (electrowetting) 18 圖2.12 雙極板式微液珠驅動系統 19 圖2.13 操作電壓與表面處理疏水層關係圖 20 圖2.14 液珠分裂過程式意圖 21 圖3.1 微影製程之曝光機 25 圖3.2 電子槍蒸鍍機 26 圖3.3 Parylene高分子化學氣相沉積原理 27 圖3.4 Parylene高分子化學氣相沉積系統 27 圖3.5 反應式離子蝕刻系統 28 圖3.6 表面輪廓分析儀 29 圖3.7 場發射電子顯微鏡 30 圖3.8 接觸角分析儀 30 圖 3.9 XPS高解析電子能譜儀 31 圖3.10 奈米級歐傑電子能譜儀 32 圖3.11 高速攝影機 32 圖4.1 不同倍率下掃描式電子顯微鏡所見之荷葉表面 33 圖4.2 利用二次模造方式複製荷葉表面結構之製程流程 34 圖4.3 Parafilm在不同溫度下的塑性變形臨界負載 35 圖4.4 不同表面之接觸角比較 36 圖4.5 PDMS負型模板於Parafilm熱壓合轉印前後表面形貌之比較 37 圖4.6 Parafilm超疏水結構上之電潤濕測試 37 圖4.7 荷葉表面奈微結構分布示意圖 38 圖4.8 THB-151N光阻製程轉速─厚度關係圖 41 圖4.9 光阻在不同熱處理時間下形貌之變化(on 200oC hotplate) 41 圖4.10 不同RIE蝕刻時間下SEM結果與形貌參數比較─蝕刻條件:RIE I 43 圖4.11 不同RIE蝕刻時間下SEM結果與形貌參數比較─蝕刻條件:RIE II 44 圖4.12 不同RIE蝕刻時間下SEM結果與形貌參數比較─蝕刻條件:RIE III 45 圖4.13 電漿輔助自我成形高分子奈米絲結構之製程流程 48 圖4.14 不同表面下進行X-ray能譜分析之成分分析比較 51 圖4.15 不同蝕刻時間下表面玻璃特有元素成分的數量增減 52 圖4.16 高分子材料表面玻璃特有元素與非玻璃特有元素之比例消長 52 圖4.17 奈米結構表面之歐傑電子能譜(AES)分析比較 54 圖4.18 奈米結構之型貌與分布變化對於距蓋撥片之相對位置的關係 55 圖4.19 不同蝕刻時間下結構長度變化之比較 56 圖4.20 自我成型奈米絲結構之成型原理 58 圖4.21 自我成型高分子奈米絲技術應用於不同材料上的效果 60 圖4.22 PDMS塗佈於光阻微米結構後導致表面平坦化 61 圖4.23 Parylene-C高分子化學氣相沉積後表面與結構截面 61 圖4.24 真實荷葉表面與仿生結構SEM比較 62 圖4.25 仿生表面製程微米尺度之結構形貌變化示意圖 62 圖4.26 仿生複合式結構製程流程與尺寸之評估 63 圖4.27 荷葉仿生結構製作結果SEM圖 64 圖4.28 動態接觸角觀測系統 65 圖4.29 奈米結構表面液珠潤試過程接觸角面化與遲滯效應之觀察 66 圖4.30 奈微米複合結構表面液珠潤試過程接觸角面化與遲滯效應之觀察 67 圖5.1 具多重尺度之超疏水晶片製程流程與結果 69 圖5.2 液珠衝擊實驗架設示意圖 69 圖5.3 不同自由落體高度之液珠衝擊超疏水表面之高速攝影時序圖 70 圖5.4 衝擊過程中液珠接觸角之時變分析 71 圖5.5 不同落下高度之微液珠底部側視接觸線之時變關係 73 圖5.6 不同自由落體條件下之能態關係圖 75 圖6.1 具超疏水表面之電潤濕晶片結構示意圖 77 圖6.2 電潤濕觀測系統 77 圖6.3 訊號控制系統與晶片平台 79 圖6.4 控制線路修改前後之比較 79 圖6.5 打線式平台製作示意圖 81 圖6.6 打線式平台實體圖 81 圖6.7 探針接觸式平台 82 圖6.8 Parylene-C重量─厚度之關係 83 圖6.9 比較不同奈米絲經Parylene-C增厚與鐵氟龍旋鍍後之形貌 84 圖6.10鐵氟龍噴霧塗佈於奈米結構的製程示意圖 85 圖6.11 鐵氟龍噴霧塗佈系統實體圖 86 圖6.12 不同表面處理條件下奈米結構表面形貌之SEM圖 86 圖6.13 不同鐵氟龍噴灑體積對於沉積厚度及粗糙度之關係 87 圖6.14 不同鐵氟龍噴灑體積與回火處理對於接觸角增加之關係 87 圖6.15 藉液珠移動來觀測表面遲滯特性 88 圖6.16 電潤濕晶片實體圖 89 圖6.17 奈米結構上所觀測到之可逆式原位電潤濕致動 89 圖6.18 超疏水表面電潤濕原位致動下操縱電壓與接觸角改變之關係 90 圖6.19 超疏水表面電潤濕原位致動下操縱電壓與接觸角改變之關係 91 圖6.20 具超疏水表面之可逆式電潤濕橫向致動晶片 92 圖6.21 液珠於可逆式電潤濕橫向致動晶片上致動情形 93 表目錄 表2.1超疏水表面製備技術比較 15 表4.1 RIE蝕刻條件表 32

    參考文獻
    [1] M. Washizu, Electrostatic actuation of liquid droplets for microreactor applications, IEEE trans. Ind. App., 34, 1998, pp. 732-737.
    [2] Orlin D.Velev, et al., On-chip manipulation of free droplets, Nature, 426, 2003, pp. 515-516.
    [3] W. J. J. Welters et al., Fast electrically switchable capillary effects, Langmuir, 14, 1998, pp. 1535-1538.
    [4] S. K. Cho, et al., Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation, Proc. 15th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2002, Las Vegas, Nevada, USA, pp. 32-35, Jan. 2002.
    [5] D. T. Wasan, et al., Droplets Speeding on Surfaces, Science, 291, 2001, pp. 605-606.
    [6] S. Daniel, et al., Fast drop movements resulting from the phase change on a gradient surface, Science, 291, 2001, pp. 633-636.
    [7] K. Ichimura, et al., Light-driven motion of liquids on a photoresponsive surface, Science, 288, 2000, pp. 1624-1626.
    [8] Joerg Lahann, et al., A Reversibly Switching Surface, Science, 299, 2003, pp. 371-374.
    [9] J.-Y.Yoon et al., Preventing Biomolecular Adsorption in Electrowetting- Based Biofluidic Chips, Analytical Chemistry, 75, 2003, pp. 5097-5102.
    [10] T. Nishino, et al., The Lowest Surface Free Energy Based on –CF3 Alignment, Langmuir, 15, 1999, pp. 4321-4323.
    [11] N. Quinn, et al., Contact Angle Saturation in Electrowetting, J. Phys. Chem. B, 109, 2005, pp. 6268-6275.
    [12] A. B. D. Cassie, et al., Wettability of Porous Surfaces, Transactions of the Faraday Society, 40, 1944, pp. 546-551.
    [13] H. C. V. Baeyer, The Lotus Effect, Sciences, 40, 2000, pp. 12-15.
    [14] W. Barthlott, et al., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1997, pp. 1-8.
    [15] C. Neinhus, et al., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany, 79, 1997, pp. 667-677.
    [16] J. W. Gibbs, Collected Works of J. W. Gibbs; Longmans Green: New York, 1931; Vol. I.
    [17] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London, 95, 1805, pp. 65-87.
    [18] R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry Research, 28, 1936, pp. 988-994.
    [19] R. E. Johnson, et al., Contact Angle Hysteresis: Contact Angle Measurements on Rough Surfaces, Adv. Chem. Series, 43, 1963, pp. 112-144.
    [20] H. Kamusewitz, et al., The Relation between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces, Colloid Surf. A: Phys. Chem. Eng. Aspect, 156, 1999, pp. 271-279.
    [21] J. F. Oliver, et al., Resistance to Spreading of Liquids by Sharp Edges, J. Colloid Inter. Sci., 59, 1977, pp. 568-581.
    [22] J. T. C. Wojtyk, et al., “Reagentless” Micropatterning of Organics on Silicon Surfaces: Control of Hydrophobic/Hydrophilic Domains, J. Am. Chem. Soc., 123, 2001, pp. 1535–1536.
    [23] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96, 1996, pp. 1533–1554.
    [24] Ostuni E, Chapman R G, Holmlin R E, Takayama S and Whitesides G M 2001 Langmuir 17 5605–20
    [25] E. Ostuni et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein, Langmuir, 17, 2001, pp. 5605-5620.
    [26] E. Ostuni et al., Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells, Langmuir, 17, 2001, pp. 6336-6343.
    [27] S . R. Coulson, et al., Super-Repellent Composite Fluoropolymer Surfaces, J. Phys. Chem. B, 104, 2000, pp. 8836-8840.
    [28] T. Nishino, et al., The Lowest Surface Free Energy Based on −CF3 Alignment, Langmuir, 15, 1999, pp. 4321-4323.
    [29] Y. Seo, et al., Nonwetting Process for Achieving Surface Functionalization of Chemically Stable Poly(tetrafluoroethylene), Langmuir, 21, 2005, pp. 3432-3435.
    [30] R. W. Jaszewski, et al., The Deposition of Anti-Adhesive Ultra-Thin Teflon-Like Films and Their Interaction with Polymers during Hot Embossing, Appl. Surf. Sci., 143, 1999, pp. 301-308.
    [31] H. Biederman, et al., Rf Magnetron Sputtering of Polytetrafluoroethylene under Various Conditions, Thin Solid Films, 392, 2001, pp. 208-213.
    [32] W. W. Stoffels, et al., Polymerization of Fluorocarbons in Reactive Ion Etching Plasmas, J. Vac. Sci. Technol. A, 16, 1998, pp. 87-95.
    [33] R. D. Mundo, et al., Nanotexturing of Polystyrene Surface in Fluorocarbon Plasmas: From Sticky to Slippery Superhydrophobicity, Langmuir, 24, 2008, pp. 5044-5051.
    [34] B. Balu, Fabrication of “Roll-off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing, Langmuir, 24, 2008, pp. 4785-4790.
    [35] H. Jiang, et al., Plasma-Enhanced Synthesis of Thin Fluoropolymer Layers with Low Raman and Fluorescence Background, Langmuir, 24, 2008, pp. 8672-8677.
    [36] G. Cunge, et al., CF2 Production and Loss Mechanics in Fluorocarbon Discharges: Fluorine-poor Conditions and Polymerization, J. Appl. Phys., 85, 1999, 3952.
    [37] S. Xu, et al., Fluorocarbon Polymer Formation, Characterization, and Reduction in Polycrystalline-Silicon Etching with CF4-add Plasma, J. Vac. Sci. Technol. A, 19, 2001, pp. 871-877.
    [38] K. Endo, et al., Plasma Deposition of Low-dielectric-constant Fluorinated Amorphous Carbon, J. Appl. Phys., 86, 1999, 2739-2745.
    [39] Y. Matsumoto, et al., The Property of Plasma-polymerized Fluorocarbon Film in Relation to CH4/C4F8 Ratio and Substrate Temperature, Sensors Actuators A: Phys., 83, 2000, pp. 179-185.
    [40] J. Bico, et al., Pearl Drops, Euro. Phys. Lett., 47, 1999, pp. 220-226.
    [41] M. Nosonovsky, On the Range of Applicability of the Wenzel and Cassie Equations, Langmuir, 23, 2007, pp. 9919-9920.
    [42] D. Oner, et al., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, 16, 2000, pp. 7777-7782.
    [43] Z. Yoshimisu, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, 18, 2002, pp. 5818-5822.
    [44] B. He, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, 19, 2003, pp. 4999-5003.
    [45] J. Jopp, et al., Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size, Langmuir, 20, 2004, pp. 10015-10019.
    [46] C. Dorrer, et al., Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces, Langmuir, 22, 2006, pp. 7652-7657.
    [47] A. Shastry, et al., Directing Droplets Using Microstructured Surfaces, Langmuir, 22, 2006, pp. 6161-6167.
    [48] N. Anantharaju, et al., Effect of Three-Phase Contact Line Topology on Dynamic Contact Angles on Heterogeneous Surfaces, Langmuir, 23, 2007, pp. 11673-11676.
    [49] D. –H. Jung, et al., Perfluorinated Polymer Monolayers on Porous Silica for Materials with Super Liquid Repellent Properties, Langmuir, 18, 2002, 6133-6139.
    [50] J. Kim, et al., Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-based Microfluidics, Proc. 15th IEEE Int. Conf. Micro Electro Machanical Systems, MEMS 2002, Jan. 20-24 2002, Las Vegas, USA, pp. 479-482.
    [51] B. He, et al., Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, 19, 2003, pp. 4999-5003.
    [52] W. Lee, et al., Nanostructuring of a Polymetric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability, Langmuir, 20, 2004, pp. 7665-7669.
    [53] S. Rahman, et al., Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates, Nano Lett., 3, 2003, pp. 439-442.
    [54] H. –M. Bok, et al., Synthesis of Perpendicular Nanorod Arrays with Hierachical Architecture and Water Slipping Superhydrophobic Properties, Langmuir, 24, 2008, pp. 4168-4173.
    [55] H. –M. Bok, et al., Designer Binary Nanostructures toward Water Slipping Superhydrophobic Surfaces, Chem. Mater., 20, 2008, pp. 2247-2251.
    [56] M. Sun, et al., Artificial Lotus Leaf by Nanocasting, Langmuir, 21, 2005, pp. 8978-8981.
    [57] Q. Xie, et al., Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure, Adv. Mater., 16, 2004, pp. 302-305.
    [58] T. Onda, et al., Super-Water-Repellent Fractal Surfaces, Langmuir, 12, 1996, pp. 2125-2127.
    [59] S. Shibuichi, et al., Super Water-Repellent Surfaces Resulting from Fractal Structure, J. Phys. Chem., 100, 1996, pp. 19512-19517.
    [60] H. Y. Erbil, et al., Transformation of a Simple Plastic into a Superhydrophobic Surface, Science, 299, 2003, pp. 1377-1380.
    [61] K. K. S. Lau, et al., Superhydrophobic Carbon Nanotube Forests, Nano Lett., 3, 2003, pp.1701-1705.
    [62] L. Zhu, et al., Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon, Langmuir, 21, 2005, pp. 11208-11212.
    [63] C. Journet, et al., Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure, Europhys. Lett., 71, 2005, pp. 104-109.
    [64] Y. C. Hong, et al., Superhydrophobicity of a material made from multiwalled carbon nanotubes, Appl. Phys. Lett., 88, 2006, 244101.
    [65] E. Hosono, et al., Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process, J. Am. Chem. Soc., 127, 2005, pp. 13458-13459.
    [66] S. Li, et al., Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes, J. Phys. Chem. B, 106, 2002, pp. 9274-9276.
    [67] T. Sun, et al., Control Over the Wettablility of an Aligned Carbon Nanotube Film, J. Am. Chem. Soc., 125, 2003, pp. 14996-14997.
    [68] W. Ming, et al., Superhydrophobic Films from Raspberry-like Particles, Nano Lett., 5, 2005, pp. 2298-2301.
    [69] M. G. Lippmann, Relation entre les phenomenes electriques et capillaires, Ann. Chim. Phys., 5, 1875, pp.494-549.
    [70] G. Beni, et al., Electro-wetting Displays, App. Phys. Lett., 38, 1981, pp. 207-209.
    [71] G. Beni, et al., Dynamics of Electrowetting Displays, J. Appl. Phys., 52, 1981, pp. 6011-6015.
    [72] B. Berge, Electrocapillarity and Wetting of Insulator Films by Water, C. R. Acad. Sci Paris, t. 317, Sèrie II, 1993, pp. 157-163.
    [73] M. G. Pollack, et al., Electrowetting-based Actuation of Liquid Droplets for Microfluidic Manipulations, Appl. Phys. Lett., 77, 2000, pp. 1725-1726.
    [74] J. Lee, et al., Addressable Micro Liquid Handling by Electric Control of Surface Tension, Proc. 14th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2001, Jan 21-25 2001, Interlaken, Switzerland, pp. 499-502.
    [75] S. K. Cho, et al., Towards Digital Microfluidic circuits: Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-based actuation, Proc. 15th IEEE Int. Conf. Micro Electro Machanical Systems, MEMS 2002, Jan. 20-24 2002, Las Vegas, USA, pp. 32-35.
    [76] J. Lee, et al., Electrowetting and Electrowetting-on-dielectric for Microscale Liquid Handling, Sensors and Actuators A, 95, 2002, pp. 259-268.
    [77] H. Moon, et al., Low Voltage Electrowetting-on-dielectric, J. App. Phys., 92, 2002, pp. 4080-4087.
    [78] F. Saeki, et al., Electrowetting on Dielectric (EWOD): Reducing Voltage Requirements for Microfluidics, Polymeric Materials: Science and Engineering, 85, 2001, pp. 12-13.
    [79] S. K. Cho, et al., Splitting a Liquid Droplet for Electrowetting-based Microfluidics, Proc. 2001 ASME Int. Mech. Eng. Cong. and Expo., IMECE2001/MEMS, Nov. 11-16 2001, New York, USA, pp. 1-7.
    [80] S. K. Cho, et al., Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits, J. MEMS, 12, 2003, pp.70-80.
    [81] S.–K. Fan, et al., EWOD Driving of Droplet od NxM Grid Using Single-Layer Electrode Patterns, Solid-State Sensor, Actuator and Microsystems Workshop, Jun. 2-6 2002, Hilton Head Island, South Carolina, USA, pp. 134-137.
    [82] S.–K. Fan, et al., Manipulation of Multiple Droplets on NxM Grid by Cross-Reference EWOD Driving Scheme and Pressure-Contact Packaging, Proc. 16th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2003, Jan. 2003, Kyoto, Japan, pp. 694-697.
    [83] B. Berge, et al., Variable Focal Lens Controlled by an External Voltage: An Application of Electrowetting, Eur. Phys. J. E, 3, 2000, pp. 159-163.
    [84] S. Kwon, et al., Focal Lens Control by Microfabrication planar Electrode-based Liquid Lens (PELL), Proc. 11th Int. Conf. Solid-State Sensors and Actuators, TRANSDUCER ’01 - EUROSENSORS XV, Munich, Germany, June 10-14, 2001, pp. 1348-1351.
    [85] H. Matsumoto, et al., Preliminary Investigation of Micropump Based on Electrical Control of Interfacial Tension, Proc. IEEE Int. Conf. Micro Electro Mechanical Systems, Napa Valley, CA, USA, Feb. 11-14, 1990, pp. 105-110.
    [86] E. Colgate, et al., Investigation of Electrowetting-based Microactuation, J. Vac. Sci. Technol. A, 8, 1990, pp.3625-3633.
    [87] K.–S. Yun, et al., A Surface Tension Driven Micropump for Low-voltage and Low-power Operation, J. Microelectromech. Sys., 11, pp. 454-461.
    [88] M. Vallet, et al., Limiting Phenomena for the Spreading of Water on Polymer Films by Electrowetting, Eur. Phys. J. B, 11, 1999, pp. 583-591.
    [89] B. Janocha, et al., Competitive Electrowetting Surface of Polymer Surfaces by Water and Decane, Langmuir, 16, 2000, pp. 3349-3354.
    [90] H. J. J. Verheijen, et al., Reversible Electrowetting and Trapping of Charge: Model and Experiments, Langmuir, 15, 1999, pp. 6616-6620.
    [91] A. Torkkeli, et al., Electrostatic Transportation of Water Droplets on Superhydrophobic Ssurfaces, Proc. 14th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2001, Jan 21-25 2001, Interlaken, Switzerland, pp. 475-478.
    [92] A. Torkkeli, et al., Droplet Manipulation on a Superhydrophobic Surface for Microchemical Analysis, Proc. 11th Int. Conf. Solid-State Sensors and Actuators, TRANSDUCER ’01 - EUROSENSORS XV, June 10-14, 2001, Munich, Germany, pp. 1150-1153.
    [93] D. L. Herbertson, et al., Electrowetting on Superhydrophobic SU-8 Patterned Surfaces, Sensors and Actuators A, 130-131, 2006, pp. 189-193.
    [94] N. J. Shirtcliffe, et al., The Use of High Aspect Ratio Photoresist (SU-8) for Super-hydrophobic Pattern Prototyping, J. Micromech. Microeng., 14, 2004, pp. 1384-1389.
    [95] G. McHale, et al., Topography Driven Spreading, Phys. Rev. Lett., 93, 036102.
    [96] T. N.Krupenkin,et al., From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 20, 2004, pp. 3824-3827.
    [97] T. Krupenkin, et al., Electrically Tunable Superhydrophobic Nanostructured Surfaces, Bell Labs Tech. J., 10, 2005, pp. 161-170.
    [98] M. S. Dhindsa, et al., Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers, Langmuir, 22, 2006, pp. 9030-9034.
    [99] N. Verplanck, et al., Reversible Electrowetting on Superhydrophobic Silicon Nanowires, Nano Lett., 7, 2007, pp. 813-817.
    [100] Parylene材料性質介紹:http://www.davidlu.net/dimer.htm
    [101]PDS機台資料:http://www.scscoatings.com/parylene_equipment/pds-2010.aspx
    [102] J. M. Roux, et al., 3D Droplet Displacement nin Microfluidic Systems by Electrostatic Actuation, Sensors Actuators A: Physical, 134, 2007, pp. 486-493.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE