研究生: |
陳明宏 Chen, Ming-Hung |
---|---|
論文名稱: |
仿生超疏水奈微米結構表面製造與分析及其於可逆式微液珠電致操控之應用 Preparation and Analysis of Biomimic Superhydrophobic Surface and its Application on Reversible Electro Microdroplet Manipulation |
指導教授: |
曾繁根
Tseng, Fan-Gang 錢景常 Chieng, Ching-Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 超疏水 、仿生 、電潤濕 、多重尺度結構 、奈米絲 |
外文關鍵詞: | Superhydrophobic, Biomimic, Electrowetting, Multi-length scale structure, Nanopillars |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究之目的在於利用仿生的觀點來進行結構引發超疏水表面之製作、分析及其電製微流體操控之應用。本研究成功發展一套電漿蝕刻引發自我成型之高分子奈米絲成形技術,免除傳統製作奈米結構時的奈米微影需求,以不須歷經在無機奈米絲製程下的高溫條件,具有極佳的奈微機電製程整合彈性。藉由荷葉仿生之概念成功並配合微米結構之製程,製作出具有奈微米尺度複合結構仿生超疏水表面,其極佳之超疏水特性(接觸角 > 155度)與極低的遲滯角(遲滯角 < 10度),堪與荷葉表面相仿。就應用面而言,液珠在此超疏水表面之動態過程的現象闡述與分析更形重要,然而受限於結構製備之限制尚無充分的研究,有鑑於此,研究中藉由液珠衝擊試驗來探討液珠與多重尺度結構表面之間接觸角時變關係與形貌變化,並分析其複合尺度結構所存在之多重介穩態與階層結構間潤濕過程所存在之能障。為改善自我成型奈米結構之材料機械特性與提升材料表面之本質接觸角,以提升超疏水表面於後續應用上之穩定度,繼而探討利用Parylene-C高分子氣相沉積以強化結構並建置一套鐵氟龍疏水材料霧化噴塗系統,在維持表面奈米結構之形貌為前提下,分析證實其表面疏水特性有顯著之改善,其接觸角可進一步達到165度而遲滯可大幅降低至3度以下。
在應用方面,吾人嘗試將此一仿生超疏水表面整合應用至電潤濕微流體控制系統中以探討其電致動之過程,結果顯示液珠可以在配合有Parylene-C結構強化與鐵氟龍疏水修飾之奈米結構表面成功進行可逆式電潤濕之原位致動與橫向移動,其最大之接觸角改變量可達~50度(電壓條件:150 Vac)。
The purpose of this dissertation is to develop and analyze a biomimic texture-induced superhydrophobic (SHP) surface as well as applied to the manipulation of electro-induced microfluidic systems. In this study, a novel fabrication of self-forming high-aspect-ratio polymer nanopillars under reactive ion etching (RIE) process was proposed in which the fabrication process need neither nano-lithography definition nor catalyst pre-forming during inorganic growing and showed a highly integration flexibility of other N/MEMS fabrication processes. Based on lotus leaf biomimic, a SHP surface with multi-length scale was successfully constructed and the contact angle (CA) can be larger than 155o and the contact angle hysteresis (CAH) can be less than 10o which was similar to the properties of real lotus leaf. In the application aspect, it is more important of the phenomena description and theoretical study of the dynamic process on such a hierarchical SHP surface. Due to the limitation of the preparation of hierarchical SHP surface, however, the study of droplet dynamic impinging to the surface was still insufficient. As a result, the free fall droplet impinging test onto SHP surface was observed and analyzed in droplet deformation and time-varied CA so as to categorized the three wetting schemes: non-wetting, micro-wetting, and nano-wetting and the textured-induced energy barriers were estimated. In order to improve the SHP stability, Parylene-C coating and Teflon spray coating were utilized to increase the rigidity and intrinsic CA of polymer nanopillars. The result shows a better SHP surface with higher CA (~165o) and lower CAH (<3o). For further application, the biomimic SHP surface was integrated with electro-induced microfluidic manipulation system and demonstrated a reversible actuation of in-situ droplet deformation and lateral moving on nanopillars SHP surface. The contact angle decrease can up to 50o under voltage applied of 150 Vac.
參考文獻
[1] M. Washizu, Electrostatic actuation of liquid droplets for microreactor applications, IEEE trans. Ind. App., 34, 1998, pp. 732-737.
[2] Orlin D.Velev, et al., On-chip manipulation of free droplets, Nature, 426, 2003, pp. 515-516.
[3] W. J. J. Welters et al., Fast electrically switchable capillary effects, Langmuir, 14, 1998, pp. 1535-1538.
[4] S. K. Cho, et al., Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation, Proc. 15th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2002, Las Vegas, Nevada, USA, pp. 32-35, Jan. 2002.
[5] D. T. Wasan, et al., Droplets Speeding on Surfaces, Science, 291, 2001, pp. 605-606.
[6] S. Daniel, et al., Fast drop movements resulting from the phase change on a gradient surface, Science, 291, 2001, pp. 633-636.
[7] K. Ichimura, et al., Light-driven motion of liquids on a photoresponsive surface, Science, 288, 2000, pp. 1624-1626.
[8] Joerg Lahann, et al., A Reversibly Switching Surface, Science, 299, 2003, pp. 371-374.
[9] J.-Y.Yoon et al., Preventing Biomolecular Adsorption in Electrowetting- Based Biofluidic Chips, Analytical Chemistry, 75, 2003, pp. 5097-5102.
[10] T. Nishino, et al., The Lowest Surface Free Energy Based on –CF3 Alignment, Langmuir, 15, 1999, pp. 4321-4323.
[11] N. Quinn, et al., Contact Angle Saturation in Electrowetting, J. Phys. Chem. B, 109, 2005, pp. 6268-6275.
[12] A. B. D. Cassie, et al., Wettability of Porous Surfaces, Transactions of the Faraday Society, 40, 1944, pp. 546-551.
[13] H. C. V. Baeyer, The Lotus Effect, Sciences, 40, 2000, pp. 12-15.
[14] W. Barthlott, et al., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1997, pp. 1-8.
[15] C. Neinhus, et al., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany, 79, 1997, pp. 667-677.
[16] J. W. Gibbs, Collected Works of J. W. Gibbs; Longmans Green: New York, 1931; Vol. I.
[17] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London, 95, 1805, pp. 65-87.
[18] R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry Research, 28, 1936, pp. 988-994.
[19] R. E. Johnson, et al., Contact Angle Hysteresis: Contact Angle Measurements on Rough Surfaces, Adv. Chem. Series, 43, 1963, pp. 112-144.
[20] H. Kamusewitz, et al., The Relation between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces, Colloid Surf. A: Phys. Chem. Eng. Aspect, 156, 1999, pp. 271-279.
[21] J. F. Oliver, et al., Resistance to Spreading of Liquids by Sharp Edges, J. Colloid Inter. Sci., 59, 1977, pp. 568-581.
[22] J. T. C. Wojtyk, et al., “Reagentless” Micropatterning of Organics on Silicon Surfaces: Control of Hydrophobic/Hydrophilic Domains, J. Am. Chem. Soc., 123, 2001, pp. 1535–1536.
[23] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96, 1996, pp. 1533–1554.
[24] Ostuni E, Chapman R G, Holmlin R E, Takayama S and Whitesides G M 2001 Langmuir 17 5605–20
[25] E. Ostuni et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein, Langmuir, 17, 2001, pp. 5605-5620.
[26] E. Ostuni et al., Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells, Langmuir, 17, 2001, pp. 6336-6343.
[27] S . R. Coulson, et al., Super-Repellent Composite Fluoropolymer Surfaces, J. Phys. Chem. B, 104, 2000, pp. 8836-8840.
[28] T. Nishino, et al., The Lowest Surface Free Energy Based on −CF3 Alignment, Langmuir, 15, 1999, pp. 4321-4323.
[29] Y. Seo, et al., Nonwetting Process for Achieving Surface Functionalization of Chemically Stable Poly(tetrafluoroethylene), Langmuir, 21, 2005, pp. 3432-3435.
[30] R. W. Jaszewski, et al., The Deposition of Anti-Adhesive Ultra-Thin Teflon-Like Films and Their Interaction with Polymers during Hot Embossing, Appl. Surf. Sci., 143, 1999, pp. 301-308.
[31] H. Biederman, et al., Rf Magnetron Sputtering of Polytetrafluoroethylene under Various Conditions, Thin Solid Films, 392, 2001, pp. 208-213.
[32] W. W. Stoffels, et al., Polymerization of Fluorocarbons in Reactive Ion Etching Plasmas, J. Vac. Sci. Technol. A, 16, 1998, pp. 87-95.
[33] R. D. Mundo, et al., Nanotexturing of Polystyrene Surface in Fluorocarbon Plasmas: From Sticky to Slippery Superhydrophobicity, Langmuir, 24, 2008, pp. 5044-5051.
[34] B. Balu, Fabrication of “Roll-off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing, Langmuir, 24, 2008, pp. 4785-4790.
[35] H. Jiang, et al., Plasma-Enhanced Synthesis of Thin Fluoropolymer Layers with Low Raman and Fluorescence Background, Langmuir, 24, 2008, pp. 8672-8677.
[36] G. Cunge, et al., CF2 Production and Loss Mechanics in Fluorocarbon Discharges: Fluorine-poor Conditions and Polymerization, J. Appl. Phys., 85, 1999, 3952.
[37] S. Xu, et al., Fluorocarbon Polymer Formation, Characterization, and Reduction in Polycrystalline-Silicon Etching with CF4-add Plasma, J. Vac. Sci. Technol. A, 19, 2001, pp. 871-877.
[38] K. Endo, et al., Plasma Deposition of Low-dielectric-constant Fluorinated Amorphous Carbon, J. Appl. Phys., 86, 1999, 2739-2745.
[39] Y. Matsumoto, et al., The Property of Plasma-polymerized Fluorocarbon Film in Relation to CH4/C4F8 Ratio and Substrate Temperature, Sensors Actuators A: Phys., 83, 2000, pp. 179-185.
[40] J. Bico, et al., Pearl Drops, Euro. Phys. Lett., 47, 1999, pp. 220-226.
[41] M. Nosonovsky, On the Range of Applicability of the Wenzel and Cassie Equations, Langmuir, 23, 2007, pp. 9919-9920.
[42] D. Oner, et al., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, 16, 2000, pp. 7777-7782.
[43] Z. Yoshimisu, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, 18, 2002, pp. 5818-5822.
[44] B. He, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, 19, 2003, pp. 4999-5003.
[45] J. Jopp, et al., Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size, Langmuir, 20, 2004, pp. 10015-10019.
[46] C. Dorrer, et al., Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces, Langmuir, 22, 2006, pp. 7652-7657.
[47] A. Shastry, et al., Directing Droplets Using Microstructured Surfaces, Langmuir, 22, 2006, pp. 6161-6167.
[48] N. Anantharaju, et al., Effect of Three-Phase Contact Line Topology on Dynamic Contact Angles on Heterogeneous Surfaces, Langmuir, 23, 2007, pp. 11673-11676.
[49] D. –H. Jung, et al., Perfluorinated Polymer Monolayers on Porous Silica for Materials with Super Liquid Repellent Properties, Langmuir, 18, 2002, 6133-6139.
[50] J. Kim, et al., Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-based Microfluidics, Proc. 15th IEEE Int. Conf. Micro Electro Machanical Systems, MEMS 2002, Jan. 20-24 2002, Las Vegas, USA, pp. 479-482.
[51] B. He, et al., Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, 19, 2003, pp. 4999-5003.
[52] W. Lee, et al., Nanostructuring of a Polymetric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability, Langmuir, 20, 2004, pp. 7665-7669.
[53] S. Rahman, et al., Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates, Nano Lett., 3, 2003, pp. 439-442.
[54] H. –M. Bok, et al., Synthesis of Perpendicular Nanorod Arrays with Hierachical Architecture and Water Slipping Superhydrophobic Properties, Langmuir, 24, 2008, pp. 4168-4173.
[55] H. –M. Bok, et al., Designer Binary Nanostructures toward Water Slipping Superhydrophobic Surfaces, Chem. Mater., 20, 2008, pp. 2247-2251.
[56] M. Sun, et al., Artificial Lotus Leaf by Nanocasting, Langmuir, 21, 2005, pp. 8978-8981.
[57] Q. Xie, et al., Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure, Adv. Mater., 16, 2004, pp. 302-305.
[58] T. Onda, et al., Super-Water-Repellent Fractal Surfaces, Langmuir, 12, 1996, pp. 2125-2127.
[59] S. Shibuichi, et al., Super Water-Repellent Surfaces Resulting from Fractal Structure, J. Phys. Chem., 100, 1996, pp. 19512-19517.
[60] H. Y. Erbil, et al., Transformation of a Simple Plastic into a Superhydrophobic Surface, Science, 299, 2003, pp. 1377-1380.
[61] K. K. S. Lau, et al., Superhydrophobic Carbon Nanotube Forests, Nano Lett., 3, 2003, pp.1701-1705.
[62] L. Zhu, et al., Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon, Langmuir, 21, 2005, pp. 11208-11212.
[63] C. Journet, et al., Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure, Europhys. Lett., 71, 2005, pp. 104-109.
[64] Y. C. Hong, et al., Superhydrophobicity of a material made from multiwalled carbon nanotubes, Appl. Phys. Lett., 88, 2006, 244101.
[65] E. Hosono, et al., Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process, J. Am. Chem. Soc., 127, 2005, pp. 13458-13459.
[66] S. Li, et al., Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes, J. Phys. Chem. B, 106, 2002, pp. 9274-9276.
[67] T. Sun, et al., Control Over the Wettablility of an Aligned Carbon Nanotube Film, J. Am. Chem. Soc., 125, 2003, pp. 14996-14997.
[68] W. Ming, et al., Superhydrophobic Films from Raspberry-like Particles, Nano Lett., 5, 2005, pp. 2298-2301.
[69] M. G. Lippmann, Relation entre les phenomenes electriques et capillaires, Ann. Chim. Phys., 5, 1875, pp.494-549.
[70] G. Beni, et al., Electro-wetting Displays, App. Phys. Lett., 38, 1981, pp. 207-209.
[71] G. Beni, et al., Dynamics of Electrowetting Displays, J. Appl. Phys., 52, 1981, pp. 6011-6015.
[72] B. Berge, Electrocapillarity and Wetting of Insulator Films by Water, C. R. Acad. Sci Paris, t. 317, Sèrie II, 1993, pp. 157-163.
[73] M. G. Pollack, et al., Electrowetting-based Actuation of Liquid Droplets for Microfluidic Manipulations, Appl. Phys. Lett., 77, 2000, pp. 1725-1726.
[74] J. Lee, et al., Addressable Micro Liquid Handling by Electric Control of Surface Tension, Proc. 14th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2001, Jan 21-25 2001, Interlaken, Switzerland, pp. 499-502.
[75] S. K. Cho, et al., Towards Digital Microfluidic circuits: Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-based actuation, Proc. 15th IEEE Int. Conf. Micro Electro Machanical Systems, MEMS 2002, Jan. 20-24 2002, Las Vegas, USA, pp. 32-35.
[76] J. Lee, et al., Electrowetting and Electrowetting-on-dielectric for Microscale Liquid Handling, Sensors and Actuators A, 95, 2002, pp. 259-268.
[77] H. Moon, et al., Low Voltage Electrowetting-on-dielectric, J. App. Phys., 92, 2002, pp. 4080-4087.
[78] F. Saeki, et al., Electrowetting on Dielectric (EWOD): Reducing Voltage Requirements for Microfluidics, Polymeric Materials: Science and Engineering, 85, 2001, pp. 12-13.
[79] S. K. Cho, et al., Splitting a Liquid Droplet for Electrowetting-based Microfluidics, Proc. 2001 ASME Int. Mech. Eng. Cong. and Expo., IMECE2001/MEMS, Nov. 11-16 2001, New York, USA, pp. 1-7.
[80] S. K. Cho, et al., Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits, J. MEMS, 12, 2003, pp.70-80.
[81] S.–K. Fan, et al., EWOD Driving of Droplet od NxM Grid Using Single-Layer Electrode Patterns, Solid-State Sensor, Actuator and Microsystems Workshop, Jun. 2-6 2002, Hilton Head Island, South Carolina, USA, pp. 134-137.
[82] S.–K. Fan, et al., Manipulation of Multiple Droplets on NxM Grid by Cross-Reference EWOD Driving Scheme and Pressure-Contact Packaging, Proc. 16th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2003, Jan. 2003, Kyoto, Japan, pp. 694-697.
[83] B. Berge, et al., Variable Focal Lens Controlled by an External Voltage: An Application of Electrowetting, Eur. Phys. J. E, 3, 2000, pp. 159-163.
[84] S. Kwon, et al., Focal Lens Control by Microfabrication planar Electrode-based Liquid Lens (PELL), Proc. 11th Int. Conf. Solid-State Sensors and Actuators, TRANSDUCER ’01 - EUROSENSORS XV, Munich, Germany, June 10-14, 2001, pp. 1348-1351.
[85] H. Matsumoto, et al., Preliminary Investigation of Micropump Based on Electrical Control of Interfacial Tension, Proc. IEEE Int. Conf. Micro Electro Mechanical Systems, Napa Valley, CA, USA, Feb. 11-14, 1990, pp. 105-110.
[86] E. Colgate, et al., Investigation of Electrowetting-based Microactuation, J. Vac. Sci. Technol. A, 8, 1990, pp.3625-3633.
[87] K.–S. Yun, et al., A Surface Tension Driven Micropump for Low-voltage and Low-power Operation, J. Microelectromech. Sys., 11, pp. 454-461.
[88] M. Vallet, et al., Limiting Phenomena for the Spreading of Water on Polymer Films by Electrowetting, Eur. Phys. J. B, 11, 1999, pp. 583-591.
[89] B. Janocha, et al., Competitive Electrowetting Surface of Polymer Surfaces by Water and Decane, Langmuir, 16, 2000, pp. 3349-3354.
[90] H. J. J. Verheijen, et al., Reversible Electrowetting and Trapping of Charge: Model and Experiments, Langmuir, 15, 1999, pp. 6616-6620.
[91] A. Torkkeli, et al., Electrostatic Transportation of Water Droplets on Superhydrophobic Ssurfaces, Proc. 14th IEEE Int. Conf. Micro Electro Mechanical Systems, MEMS 2001, Jan 21-25 2001, Interlaken, Switzerland, pp. 475-478.
[92] A. Torkkeli, et al., Droplet Manipulation on a Superhydrophobic Surface for Microchemical Analysis, Proc. 11th Int. Conf. Solid-State Sensors and Actuators, TRANSDUCER ’01 - EUROSENSORS XV, June 10-14, 2001, Munich, Germany, pp. 1150-1153.
[93] D. L. Herbertson, et al., Electrowetting on Superhydrophobic SU-8 Patterned Surfaces, Sensors and Actuators A, 130-131, 2006, pp. 189-193.
[94] N. J. Shirtcliffe, et al., The Use of High Aspect Ratio Photoresist (SU-8) for Super-hydrophobic Pattern Prototyping, J. Micromech. Microeng., 14, 2004, pp. 1384-1389.
[95] G. McHale, et al., Topography Driven Spreading, Phys. Rev. Lett., 93, 036102.
[96] T. N.Krupenkin,et al., From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 20, 2004, pp. 3824-3827.
[97] T. Krupenkin, et al., Electrically Tunable Superhydrophobic Nanostructured Surfaces, Bell Labs Tech. J., 10, 2005, pp. 161-170.
[98] M. S. Dhindsa, et al., Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers, Langmuir, 22, 2006, pp. 9030-9034.
[99] N. Verplanck, et al., Reversible Electrowetting on Superhydrophobic Silicon Nanowires, Nano Lett., 7, 2007, pp. 813-817.
[100] Parylene材料性質介紹:http://www.davidlu.net/dimer.htm
[101]PDS機台資料:http://www.scscoatings.com/parylene_equipment/pds-2010.aspx
[102] J. M. Roux, et al., 3D Droplet Displacement nin Microfluidic Systems by Electrostatic Actuation, Sensors Actuators A: Physical, 134, 2007, pp. 486-493.