研究生: |
鄭嘉恩 Tee, Jia-En |
---|---|
論文名稱: |
Pt修飾之Mn0.5Cd0.5S應用於光催化水分解產氫之研究 Enhancing Photocatalytic Hydrogen Production with Pt-decorated Mn0.5Cd0.5S Nanoparticles in Water Splitting |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
呂明諺
Lu, Ming-Yen 吳文偉 Wu, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 光催化水解產氫 、Pt修飾之Mn0.5Cd0.5S 、共觸媒 |
外文關鍵詞: | Pt-decorated Mn0.5Cd0.5S |
相關次數: | 點閱:41 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體因其在氫氣生產中的角色而受到關注。已知硫化鎘(CdS)在光催化產氫方面表現出色,但其面臨嚴重的光腐蝕問題,導致整體性能下降。為了克服這一問題,我們引入了錳(Mn)元素到CdS中,形成了一種過渡金屬取代的固溶體,即Mn0.5Cd0.5S。結果顯示,加入錳原子後明顯提高了光催化性能。
本研究中,我們使用水熱法合成了Mn0.5Cd0.5S奈米粒子。隨後,我們採用化學還原法將貴金屬白金(Pt)修飾到Mn0.5Cd0.5S材料表面,旨在提高其光催化性能。從結果來看,添加白金後顯著提高了氫氣生產效率。這一提升主要歸因於半導體與金屬之間形成的Schottky barrier,有助於有效的電荷分離和轉移。總體而言,Mn0.5Cd0.5S材料搭載3 wt.% Pt擁有最好的氫氣表現。
Semiconductors have gained attention for their role in hydrogen production. While CdS is renowned for its efficient hydrogen generation, it suffers from severe photocorrosion, which compromises its overall performance. To overcome this problem, we introduced Mn elements into this material. Our Mn0.5Cd0.5S nanoparticles were prepared via a hydrothermal method, resulting in a transition-metal-substituted solid solution known as Mn0.5Cd0.5S. The introduction of Mn atoms into CdS notably augmented the photocatalytic efficiency.
In the present study, we synthesized Mn0.5Cd0.5S nanoparticles to facilitate photocatalytic hydrogen production through water splitting. Subsequently, our focus shifted towards enhancing the photocatalytic performance by incorporating noble metal platinum onto Mn0.5Cd0.5S through a chemical reduction method. The results demonstrate a significant increase in the rate of hydrogen production upon the addition of Pt. This enhancement can be attributed to the formation of a Schottky barrier at the interface between the semiconductor and the metal, which facilitated efficient charge separation and transfer. Overall, Mn0.5Cd0.5S decorated with 3 wt.% Pt exhibited the highest yield in hydrogen production.
(1) Ritchie, H. “Energy Production and Consumption” Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/energy-production-consumption'. 2020.
(2) Dawood, F.; Anda, M.; Shafiullah, G. M. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 2020, 45, p. 3847. DOI: 10.1016/j.ijhydene.2019.12.059.
(3) Zainal, B. S.; Ker, P. J.; Mohamed, H.; Ong, H. C.; Fattah, I. M. R.; Rahman, S. M. A.; Nghiem, L. D.; Mahlia, T. M. I. Recent advancement and assessment of green hydrogen production technologies. Renewable and Sustainable Energy Reviews 2024, 189, p. 113. DOI: 10.1016/j.rser.2023.113941.
(4) Marschall, R. 50 Years of Materials Research for Photocatalytic Water Splitting. European Journal of Inorganic Chemistry 2021, 2021, p. 2435. DOI: 10.1002/ejic.202100264.
(5) Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M. Y. Recent Progress in Energy-Driven Water Splitting. Adv Sci (Weinh) 2017, 4, p. 1600337. DOI: 10.1002/advs.201600337.
(6) Sudha, P. N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures, 2018, Elsevier, Amsterdam, p. 341. DOI: 10.1016/B978-0-323-51254-1.00012-9.
(7) Hulla, J. E.; Sahu, S. C.; Hayes, A. W. Nanotechnology: History and future. Human & Experimental Toxicology, 2015, 34, p. 1318. DOI: 10.1177/0960327115603588.
(8) Asha, A. B.; Narain, R. Nanomaterials properties. Polymer Science and Nanotechnology, 2020, Elsevier, Amsterdam, p. 343. DOI: 10.1016/b978-0-12-816806-6.00015-7.
(9) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 2009, 8, p. 76. DOI: 10.1038/nmat231.
(10) Tsai, A. P. A test of Hume-Rothery rules for stable quasicrystals. Journal of Non-Crystalline Solids 2004, 334, p. 317. DOI: 10.1016/j.jnoncrysol.2003.11.065.
(11) Zhang, Y. M.; Yang, S.; Evans, J. R. G. Revisiting Hume-Rothery’s Rules with artificial neural networks. Acta Materialia 2008, 56, p. 1094. DOI: 10.1016/j.actamat.2007.10.059.
(12) Xing, C.; Zhang, Y.; Yan, W.; Guo, L. Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy 2006, 31, p. 2018. DOI: 10.1016/j.ijhydene.2006.02.003.
(13) Zhang, S.; Lou, J.; Wang, C.; Li, Q.; Li, Y.; Jin, L.; Guo, C. Modification strategies and applications of Mn–Cd–S solid solution-based photocatalysts. Materials Today Catalysis 2024, 5, p. 100055. DOI: 10.1016/j.mtcata.2024.100055.
(14) Mamiyev, Z.; Balayeva, N. O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, p. 1316. DOI: 10.3390/catal12111316.
(15) Liu, Q.; Liu, K.; Huang, J.; Hui, C.; Li, X.; Feng, L. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction. Dalton Trans 2024, 53, p. 3959. DOI: 10.1039/d3dt04244h.
(16) Arole1, V. M.; Munde2, S. V. Fabrication of nanomaterials by top-down and bottom-up approaches: An overview. Journal of Advances in Applied Science and Technology 2014, 1, p. 89. Doi:10.1016/b978-0-323-51254-1.00012-9
(17) Liang, S.; Xia, Y.; Zhu, S.; Zheng, S.; He, Y.; Bi, J.; Liu, M.; Wu, L. Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Applied Surface Science 2015, 358, p. 304. DOI: 10.1016/j.apsusc.2015.08.035.
(18) He, Y.; Jiang, G.; Jiang, Y.; Tang, L.; Zhang, C.; Guo, W.; Li, F.; You, L.; Li, S.; Liu, X. In-situ nanoarchitectonics of noble-metal-free g-C3N4@C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution. Journal of Alloys and Compounds 2022, 895, p. 162583. DOI: 10.1016/j.jallcom.2021.162583.
(19) Zhou, X.; Dong, H. A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem 2019, 11, p. 3688. DOI: 10.1002/cctc.201900567.
(20) Reddy, N. L.; Rao, V. N.; Vijayakumar, M.; Santhosh, R.; Anandan, S.; Karthik, M.; Shankar, M. V.; Reddy, K. R.; Shetti, N. P.; Nadagouda, M. N.; et al. A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. International Journal of Hydrogen Energy 2019, 44, p. 10453. DOI: 10.1016/j.ijhydene.2019.02.120.
(21) Al-Madanat, O.; Curti, M.; Günnemann, C.; AlSalka, Y.; Dillert, R.; Bahnemann, D. W. TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catalysis Today 2021, 380, p. 3. DOI: 10.1016/j.cattod.2021.07.013.
(22) Harris, C.; Kamat*, P. V. Photocatalytic Events of CdSe Quantum Dots in Confined Media. Electrodic Behavior of Coupled Platinum Nanoparticles. ACS Nano 2010, 4, p. 7321. DOI: 10.1021/nn102564x.
(23) Nazir, M. A.; Najam, T.; Altaf, M.; Ahmad, K.; Hossain, I.; Assiri, M. A.; Javed, M. S.; Rehman, A. u.; Shah, S. S. A. Tuning the photocatalytic hydrogen production via co-catalyst engineering. Journal of Alloys and Compounds 2024, 990, p. 174378. DOI: 10.1016/j.jallcom.2024.174378.
(24) Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy & Environmental Science 2021, 14, p. 2954. DOI: 10.1039/d1ee00247c.
(25) Liu, M.; Xia, P.; Zhang, L.; Cheng, B.; Yu, J. Enhanced Photocatalytic H2-Production Activity of g-C3N4 Nanosheets via Optimal Photodeposition of Pt as Cocatalyst. ACS Sustainable Chemistry & Engineering 2018, 6, p. 10472. DOI: 10.1021/acssuschemeng.8b01835.
(26) Md. Aminul Islam; M. Anwarul Kabir Bhuiya; Islam, M. S. A Review on Chemical Synthesis Process of Platinum Nanoparticles. Asia Pacific Journal of Energy and Environment 2014, 1, p. 107. DOI:10.15590/apjee/2014/v1i2/53749
(27) Li, L.; Zhao, Y.; Lei, Z.; Yang, C. One-pot synthesis of a PtCu alloy catalyst for the methanol oxidation reaction. New Journal of Chemistry 2022, 46, p. 20260. DOI: 10.1039/d2nj03864a.
(28) Pan, H. J.; Lin, C. Y.; Mohanty, U. S.; Chou, J. H. Synthesis of Sn-3.5Ag Alloy Nanosolder by Chemical Reduction Method. Materials Sciences and Applications 2011, 2, p. 1480. DOI: 10.4236/msa.2011.210199.
(29) Zhang, X.; Peng, T.; Song, S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A 2016, 4, p. 2365. DOI: 10.1039/c5ta08939e.
(30) Jiang, X.; Gong, H.; Liu, Q.; Song, M.; Huang, C. In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light. Applied Catalysis B: Environmental 2020, 268, p. 118439. DOI: 10.1016/j.apcatb.2019.118439.
(31) Zhang, M.; Fang, N.; Song, X.; Chu, Y.; Shu, S.; Liu, Y. p-n Heterojunction Photocatalyst Mn(0.5)Cd(0.5)S/CuCo(2)S(4) for Highly Efficient Visible Light-Driven H(2) Production. ACS Omega 2020, 5, p. 32715. DOI: 10.1021/acsomega.0c05106.
(32) Xu, J.; Cao, X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chemical Engineering Journal 2015, 260, p. 642. DOI: 10.1016/j.cej.2014.07.046.
(33) He, X.; Zeng, D.; Liu, Y.; Chen, Q.; Yang, J.; Gao, R.; Fujita, T.; Wei, Y. Porous Co(x)P nanosheets decorated Mn(0.35)Cd(0.65)S nanoparticles for highly enhanced noble-metal-free photocatalytic H(2) generation. J Colloid Interface Sci 2022, 625, p. 859. DOI: 10.1016/j.jcis.2022.06.102.
(34) Wang, J.; Luo, J.; Liu, D.; Chen, S.; Peng, T. One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Applied Catalysis B: Environmental 2019, 241, p. 130. DOI: 10.1016/j.apcatb.2018.09.033.
(35) Ikeue, K.; Shiiba, S.; Machida, M. Novel Visible-Light-Driven Photocatalyst Based on Mn−Cd−S for Efficient H2 Evolution. Chemistry of Materials 2009, 22, p. 743. DOI: 10.1021/cm9026013.
(36) Naldoni, A.; D’Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Selli, E.; Dal Santo, V. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Applied Catalysis B: Environmental 2013, 130, p. 239. DOI: 10.1016/j.apcatb.2012.11.006.
(37) Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic photocatalysis. Rep Prog Phys 2013, 76, p. 046401. DOI: 10.1088/0034-4885/76/4/046401.
(38) Al-Azri, Z. H. N.; Chen, W.-T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G. I. N. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. Journal of Catalysis 2015, 329, p. 355. DOI: 10.1016/j.jcat.2015.06.005.
(39) Huang, X.; Song, J.; Wu, G.; Miao, Z.; Song, Y.; Mo, Z. Recent progress on the photocatalytic hydrogen evolution reaction over a metal sulfide cocatalyst-mediated carbon nitride system. Inorganic Chemistry Frontiers 2024, 11, p. 2527. DOI: 10.1039/d4qi00255e.
(40) Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, p. 1900. DOI: 10.1021/ar300227e
(41) Feng, K.; Wang, C.; Hu, X.; Fan, J.; Liu, E. Highly efficient photocatalytic H2 evolution over Ni‐doped Mn0.5Cd0.5S nanorods under visible light. International Journal of Energy Research 2022, 46, p. 20828. DOI: 10.1002/er.8130.
(42) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research 2011, 25, p. 3. DOI: 10.1557/jmr.2010.0020.
(43) Cao, S.; Piao, L. Considerations for a More Accurate Evaluation Method for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020, 59, p. 18312. DOI: 10.1002/anie.202009633.
(44) Guo, H.; Wan, S.; Wang, Y.; Ma, W.; Zhong, Q.; Ding, J. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chemical Engineering Journal 2021, 412, p. 128646. DOI: 10.1016/j.cej.2021.128646.
(45) Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al‐Ghamdi, A. A.; Yu, J. A Review of Direct Z‐Scheme Photocatalysts. Small Methods 2017, 1, p. 1700080. DOI: 10.1002/smtd.201700080.
(46) Malefane, M. E.; Mafa, P. J.; Managa, M.; Nkambule, T. T. I.; Kuvarega, A. T. Understanding the Principles and Applications of Dual Z-Scheme Heterojunctions: How Far Can We Go? J Phys Chem Lett 2023, 14, p. 1029. DOI: 10.1021/acs.jpclett.2c03387.
(47) Lee, H.; Park, Y.; Song, K.; Park, J. Y. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications. Acc Chem Res 2022, 55, p. 3727. DOI: 10.1021/acs.accounts.2c00623.
(48) Lv, S.; Du, Y.; Wu, F.; Cai, Y.; Zhou, T. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling. Nanoscale Adv 2022, 4, p. 2608. DOI: 10.1039/d2na00140c.
(49) Liu, Y.; Sun, Z.; Hu, Y. H. Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chemical Engineering Journal 2021, 409, p. 128250. DOI: 10.1016/j.cej.2020.128250.
(50) Cui, X.; Chen, Y.; Zhang, M.; Harn, Y. W.; Qi, J.; Gao, L.; Wang, Z. L.; Huang, J.; Yang, Y.; Lin, Z. Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy & Environmental Science 2020, 13, p. 1743. DOI: 10.1039/c9ee03937f.
(51) Ma, L.; Chen, K.; Nan, F.; Wang, J. H.; Yang, D. J.; Zhou, L.; Wang, Q. Q. Improved Hydrogen Production of Au–Pt–CdS Hetero‐Nanostructures by Efficient Plasmon‐Induced Multipathway Electron Transfer. Advanced Functional Materials 2016, 26, p. 6076. DOI: 10.1002/adfm.201601651.
(52) Yang, J.; Wang, D. H., Hongxian; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, p. 1900. DOI: 10.1021/ar300227e.