簡易檢索 / 詳目顯示

研究生: 林俊民
Chun-Min Lin
論文名稱: 理想液晶極化分光計調控經由週期光柵電極之均勻電場
The Polarized Beam Splitter from an Ideal Liquid Crystal Generated by a Uniform Electric Field through Patterned Electrodes
指導教授: 陳皇銘
Huang-Ming Philip Chen
呂助增
Juh-Tzeng Lue
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 58
中文關鍵詞: 液晶光柵繞射光柵液晶極化分光計
外文關鍵詞: LC grating, polarized beam splitter, diffraction devices
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年顯示科技領域發展,液晶光學研究及各式液晶材料合成進步,更加廣泛應用在於顯示科技,而不僅是在顯示方面,更應用於光電元件,在此研究我們提出一種元件結構是經由兩片週期線條ITO玻璃對位重疊製成空cell,因而形成ITO區塊與非ITO區塊週期交錯,並灌入液晶來製程可調控式液晶光柵,利用週期光柵電極產生之均勻電場調控液晶排列,因而形成所謂 Binary phase grating,進而達到應用於極化分光計
    此實驗使用正負型兩種類型液晶材料(E7、MJ041937)灌入此架構,對於負型液晶材料(MJ041937)而言,繞射效率 和 分別可達到1~2% 和40%,而對於正型液晶(E7)而言 和 分別為0.1%~0.5% 和40%。幾年來利用液晶製程光柵方法提出許多,比較其眾多方法及不同材料利用,此液晶光柵具有當程度優勢,兼具有無散射效果、非繞射效果(無加電壓狀態)、低電壓操作廣波長範圍(正型液晶E7)及維持任何入射偏振方向在非操作狀態(負型液晶MJ041937)


    A PBS from an idea LC was demonstrated by the structure with double-sided patterned electrodes biased by a uniform electric field. The binary phase grating was formed by two periodically arranged indium-tin-oxide (ITO) stripes. Adjusting the applied voltage, the orientation of LC molecules was controlled by the patterned ITO electrodes and resulting with a phase difference occurring between two domains embodying in achieving applications for diffractive devices.

    In this work, E7 and MJ041937 (VA) liquid-crystal materials were prepared. For MJ041937 (VA), diffraction efficiencies of the zero and the first order were performed with results of 1~2% and 40% respectively. Whereas, for E7, diffraction efficiencies of the zero and the first order are 0.1%~0.5% and 40% respectively. However, these devices demonstrate advantages of no scattering, and no diffraction during no applying voltage, a spread selection in input wavelengths, low voltages and retaining the original polarization without applying field for MJ041937 (VA)

    Chinese abstract English abstract Acknowledgement Table of contents List of Figures List of Tables Chapter 1 Introduction 1.1 Introduction of Liquid Crystal Grating Devices 1.2 Liquid Crystal Phases 1.3 Types of Developed Liquid-Crystal Gratings 1.3.1 Introduction 1.3.2 Patterned Photopolymerization 1.3.3 Holographic Alignment 1.3.4 Patterned-ITO Electrodes 1.4 Grating Application 1.4.1 Projection Displays by Binary Phase LC Gratings 1.4.2 Ferroelectric Liquid Crystal Gratings 1.4.3 LC Blazed Grating Beam-Steering Devices Chapter 2 Liquid Crystal Polarization Beam Splitter(LC PBS) 2.1 Introduction 2.2 The Basic Theory of Polarization Binary Grating Beam Splitter 2.3 Optical Properties of Liquid Crystals and Phase Modulation 2.3.1 Optical Properties of Liquid Crystals 2.3.2 Phase Modulation 2.4 LC PBS Operation Principle 2.5 Analysis of LC PBS by Patterned-ITO Electrodes 2.6 Advanced Advantages for an Ideal LC PBS Chapter 3 Materials、Fabrication Process and Instruments 3.1 Introduction 3.2 Grating Mask Design 3.3 Materials Preparation 3.4 Cell Fabrication Process 3.5 Observation of Thickness and Patterns of Thin-ITO Glasses 3.5.1 Observation of Thickness of Thin-ITO Glasses 3.5.2 Observation of Etched and Overlapped –ITO Patterns 3.6 Instruments 3.6.1 Atomic Force Microscope (AFM) 3.6.2 Cell Gap Measurement System 3.6.3 Laser Optics Systems Chapter 4 Experiments and Results 4.1 Introduction 4.2 Diffraction Efficiencies of 100nm and 13nm Thickness ITO Glasses 4.3 Experiment Part 1: MJ-041937 LC Materials 4.3.1 Phase Retardation for 5um, 8um, and 10um Cell Gaps 4.3.2 Alignment Texture: The Period 20um and 5um Cell Gap 4.3.3 Diffraction Efficiencies: The Period 20um and 5um Cell Gap 4.3.4 Alignment Texture: The Period 40um and 5um Cell Gap 4.3.5 Diffraction Efficiencies: The Period 40um and 5um Cell Gap 4.3.6 Diffraction Efficiencies With Three Wavelengths(R, G, B) 4.3.7 Diffraction patterns: The Period 40um and 5um Cell Gap 4.4 Experiment part 2: E7 LC Materials 4.4.1 Alignment texture: The Period 40um and 5um Cell Gap 4.4.2 Diffraction Efficiencies: The Period 40um and 5um Cell gap 4.4.3 Diffraction patterns: The Period 40um and 5um Cell Gap Chapter 5 Conclusions 5.1 Summary 5.2 Future Works List of Tables Table.3.1. Optical properties of E7 and MJ041937

    [1] Takeyuki, Ajito Takashi Obi, Masahiro Yamaguchi, Nagaaki Ohyama, Opt. Eng. 38(11) (1999)

    [2] Alexander Parfenov, APPLIED OPTICS Vol. 38, No. 26 (1999)

    [3] Jae-Hong Park, Chang-Jae Yu, Jinyool Kim, Sung-Yeop Chung, and Sin-Doo Lee, Appl. Phys. Lett., Vol. 83, No. 10 (2003)

    [4]E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, Opt. Commun.209, 45 (2002)

    [5] Darius Subacius, Jay E. Stockley and Steven A. Serati, SPIE Proceedings, Volume 3778 (1999)

    [6] Sang Hwa Kim and Liang-Chy Chien, OPTICS EXPRESS Vol. 12, No. 7 (2004)

    [7] Shin Matsumoto, George Kawamura, JOURNAL OF APPLIED PHYSICS 99, 113709 (2006)

    [8] Kanbe, H. Inoue, A. Mizutome, Y. Hanyuu, K. Katagiri, S. Yoshihara, Ferroelectrics, 114(1-4), 3 (1991)

    [9] N. Yamada, S. Kohzaki, F. Funada, K.Awane, SID Digest of Technical Papers, pp.575-578 (1995)

    [10] Y. Ji, J. Francl, W. J. Fritz, P. J. Bos, and J. L. West, SID Digest of Technical Papers, 611 (1996).

    [11] W.T. He, T. Nose and S. Sato, Jpn. J. Appl. Phys. 37, pp.4066-4069 (1998)

    [12] Scott J. Woltman, James N. Eakin, and Gregory P. Crawford, OPTICS LETTERS Vol. 31, No. 22 (2006)

    [13] Pao-Tai Lin, Xiao Liang, Hongwen Ren, and Shin-Tson Wu, Appl. Phys. Lett., Vol. 85, No. 7 (2004)

    [14] Gregory P. Crawford, James N. Eakin, Marc D. Radcliffe, Andrew Callan-Jones and Robert A. Pelcovits, JOURNAL OF APPLIED PHYSICS 98, 123102 (2005)

    [15] James N. Eakin, Yunhe Xie, Robert A. Pelcovits, Marc D. Radcliffe, Gregory P. Crawford, Appl. Phys. Lett., Vol. 85, No. 10 (2004)

    [16] Hyunhee Choi and J. W. Wu, Hye Jeong Chang, Byoungchoo Park, APPLIED PHYSICS LETTERS 88, 021905 (2006)

    [17] Andy Y.-G. Fuh, L.-C. Chien, J. Appl. Phys. 83 (2) (1998)

    [18] G. Cipparrone, A. Mazzulla, and G. Russo, Appl. Phys. Lett., Vol. 78, No. 9 (2001)

    [19] Suraj P. Gorkhali, Robert A. Pelcovits, APPLIED PHYSICS LETTERS 88, 251113 (2006)

    [20] Z. Sekkat and M. Dumont, Synth. Met. 54, 373 (1993)

    [21] Manuel Bouvier Toralf Scharf, Opt. Eng. 39(8) (2000)

    [22] C. V. Brown, Em. E. Kriezis, and S. J. Elston, J. Appl. Phys., Vol. 91, No. 6. (2002)

    [23] J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, Appl. Phys. Lett. 67 (18). (1995)

    [24] C. W. Lin, Y. Y. Tsai, K. G. PaniKumar, H. M. Philip Chen, SID’06 Digest, 170 (2006)

    [25] Boris Apter, Uzi Efron, and Eldad Bahat-Treidel, APPLIED OPTICS, Vol. 43, No. 1 (2004)

    [26] C. M. Titus and J. R. Kelly, OPTICS LETTERS, Vol. 26, No. 15 (2001)

    [27] Xu Wanga, Daniel W. Wilsonb, Richard E. Muller, Paul D. Maker, Demetri Psaltisa, SPIE Vol. 3468 (1998)

    [28] Jay Stockley, Xiaowei Xia, Teresa Ewing, and Steve Serati, MRS Proceedings, Volume 709 (2001)

    [29] Jeffrey A. Davis and Jingo Adachi, OPTICS LETTERS, Vol. 26, No. 9 (2001)

    [30] Jeffrey A. Davis and Jingo Adachi, OPTICS LETTERS, Vol. 29, No. 13 (2004)

    [31] David Dunmur, Atsuo Fukuda, Geoffery Luckhurst, Physical properties of liquid crystals: Nematic

    [32] F. Bruyneel, H.D. Smet, J. Vanfleteren, A.V.Calster, Opt. Eng., 40(2), 259 (2001)

    [33] Ebru A. B□y□ktanir, Maxim Mitrokhin, B□rre Holter, Anatoliy Glushchenko, APPLIED PHYSICS LETTERS 89, 031101 (2006)

    [34] N. Gheorghiu, J. L. West, and A. V. Glushchenko, M. Mitrokhin, APPLIED PHYSICS LETTERS 88, 263511 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE