簡易檢索 / 詳目顯示

研究生: 胡宜禎
論文名稱: 具溫度/酸鹼敏感雙重開關之藥物釋放系統
Beads with a Thermo-sensitive Porous-shell and a pH-sensitive Core as a Dual-switched Drug Delivery System
指導教授: 宋信文
口試委員: 王麗芳
許明照
邱信程
陳三元
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 47
中文關鍵詞: 溫度敏感性酸鹼敏感性微流道系統藥物釋放水膠
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,藉由外在環境如溫度、pH值的變化,進而刺激藥物釋放的藥物載體系統,相較起傳統的藥物載體,精確且有效許多。在體內惡性腫瘤與發炎部位的周圍環境,常同時伴隨著兩種生理因子的變化:一是患部體溫的上升,二是發炎組織 pH值的下降。因此,微米藥物載體經過適切的設計,使其具有雙重刺激的反應,可以增強藥物載體分辨正常與發炎組織的能力,達到更高的標的效率與治療效能。
    目前研究顯示,具有多重刺激反應的藥物載體結構複雜、製程較繁複,藥物包覆率、載體均一性、相容性及對患部的反應性仍低。為改善上述問題,我們利用微流道技術設計thermo-sensitive porous shell / pH-sensitive core beads應用於藥物載體系統上,其殼層的結構由PLGA以及gelatin所組成,內部利用NPCS形成一水相的核層,大小約為300μm左右,並可以利用原位注射的方式注入到患部,在患部因為環境因子 (溫度、pH值)改變的刺激,使此載體進行雙開關調控的藥物釋放。第一個開關調控是透過溫度敏感性,當溫度升高超過38℃時,殼層上的gelatin會先融化 (unplug),產生殼層上多孔的通透結構,接著由第二個開關調控,在酸性環境 (pH 6.8~6.0)中,體液通過gelatin融化後的孔洞進入核層,酸敏感性的NPCS水膠會變成溶液態而流出,進行藥物的釋放。
    論文中主要分為三大主題。首先利用微流道系統製備均一性高、具有生物相容性、藥物包覆率及球徑大小可簡單控制的微米藥物載體,並觀察其表面型態與內層結構。接著,我們對製備出的藥物載體進行體外釋放 (in vitro)的實驗,以證實此載體具有溫度敏感及pH敏感性,能成為新型具雙重刺激反應功能的藥物載體。最後,我們以即時監測的方式測試載體的動態釋放變化,證實此為一能在患部進行雙開關調控的藥物釋放載體。


    致謝 I 摘要 II 圖目錄 IV 表目錄 VI 第一章 緒論 1 1-1 藥物制放系統 1 1-2 生物可降解性高分子材料 2 1-3 PLGA作為藥物釋放載體 4 1-4 微流道系統 5 1-5 N-palmitoyl chitosan (NPCS) 10 1-6 微流道系統的製備方法 11 1-7 研究動機與目的 13 第二章 製程與實驗 17 2-1 NPCS的製備過程 17 2-2 利用微流道系統製備PLGA微粒 18 2-3 改變微流道各相流速對微粒的影響 20 2-4 以場發式掃描式電子顯微鏡(Field-Emission SEM)觀察微球表面型態 21 2-5 以切片機(Freezing Microtome)觀察切面 22 2.6 以共軛焦螢光顯微鏡(Confocal Microscope) 掃描微球 22 2-7 PLGA微球之體外釋放 24 第三章 結果與討論 29 3-1 改變各相流速對微球的影響 29 3-2 微球表面型態及內層結構 33 3-3 微球溫度敏感之釋放情形 37 3-4 微球pH敏感之釋放情形 38 3-5 即時監控微球釋放 40 第四章 結論 43 參考文獻 44

    1. 張靜宜, 聚癸二酸酐-聚乳酸三團聯共聚物之合成、鑑定及其應用於藥物釋放. 碩士論文, 國立清華大學化學工程學系.
    2. 黃培傑, 具酸鹼敏感性可快速釋放藥物之載體系統. 碩士論文, 國立清華大學化學工程學系.
    3. Uhrich, K.E., et al., Polymeric systems for controlled drug release. Chemical Reviews, 1999. 99(11): p. 3181-3198.
    4. Joosten, U., et al., Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin osteomyelitis: Studies in the treatment of chronic in vitro and in vivo. Biomaterials, 2004. 25(18): p. 4287-4295.
    5. Takechi, M., et al., Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. Journal of Biomedical Materials Research, 1998. 39(2): p. 308-316.
    6. Armstrong, M.S., et al., Mechanical characteristics of antibiotic-laden bone cement. Acta Orthopaedica Scandinavica, 2002. 73(6): p. 688-690.
    7. Gbureck, U., J. Probst, and R. Thull, Surface properties of calcium phosphate particles for self setting bone cements. Biomolecular Engineering, 2002. 19(2-6): p. 51-55.
    8. Schnieders, J., et al., Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials, 2006. 27(23): p. 4239-49.
    9. Trippel, S.B., Antibiotic-impregnated cement in total joint arthroplasty. J Bone Joint Surg Am, 1986. 68(8): p. 1297-302.
    10. Waertel, G., The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. J Bone Joint Surg Am, 1996. 78(3): p. 472-3.
    11. Khang, G., et al., Fabrication of tubular porous PLGA scaffold by emulsion freeze-drying method. Polymer-Korea, 1999. 23(3): p. 471-477.
    12. Jalil, R. and J.R. Nixon, Biodegradable Poly(Lactic Acid) and Poly(Lactide-Co-Glycolide) Microcapsules - Problems Associated with Preparative Techniques and Release Properties. Journal of Microencapsulation, 1990. 7(3): p. 297-325.
    13. Heller, J., Controlled Drug Release from Poly(Ortho Esters). Annals of the New York Academy of Sciences, 1985. 446: p. 51-66.
    14. Heller, J., Controlled Release of Biologically-Active Compounds from Bioerodible Polymers. Biomaterials, 1980. 1(1): p. 51-57.
    15. Dixit, V., et al., Functional characteristics of primary rat hepatocytes in monolayers and on three-dimensional PLGA scaffold. Gastroenterology, 1999. 116(4): p. A1204-A1204.
    16. Oh, J.H., In vivo comparison of corneal substitutes using PLGA scaffold, Type I collagen film, Type I collagen film combined with amniotic membrane and lyophilized homologous cornea. Investigative Ophthalmology & Visual Science, 2002. 43: p. U1190-U1190.
    17. Astete, C.E. and C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science-Polymer Edition, 2006. 17(3): p. 247-289.
    18. Kitchell, J.P. and D.L. Wise, Poly(Lactic Glycolic Acid) Biodegradable Drug Polymer Matrix Systems. Methods in Enzymology, 1985. 112: p. 436-448.
    19. Kim, H.K., H.J. Chung, and T.G. Park, Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone. Journal of Controlled Release, 2006. 112(2): p. 167-174.
    20. Chung, H.J., et al., Highly open porous biodegradable microcarriers: In vitro cultivation of chondrocytes for injectable delivery. Tissue Engineering Part A, 2008. 14(5): p. 607-615.
    21. Chung, H.J., et al., Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharmaceutical Research, 2006. 23(8): p. 1835-1841.
    22. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
    23. Choi, S.W., et al., Preparation of Uniform Microspheres Using a Simple Fluidic Device and Their Crystallization into Close-Packed Lattices. Small, 2009. 5(4): p. 454-459.
    24. Mehta, G., et al., Hard Top Soft Bottom Microfluidic Devices for Cell Culture and Chemical Analysis. Analytical Chemistry, 2009. 81(10): p. 3714-3722.
    25. Wang, J.T., J. Wang, and J.J. Han, Fabrication of Advanced Particles and Particle-Based Materials Assisted by Droplet-Based Microfluidics. Small, 2011. 7(13): p. 1728-1754.
    26. Dendukuri, D. and P.S. Doyle, The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics. Advanced Materials, 2009. 21(41): p. 4071-4086.
    27. Huang, C.C., et al., Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials, 2012. 33(16): p. 4069-77.
    28. Kim, M.R., et al., Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion. Chem Commun (Camb), 2010. 46(39): p. 7433-5.
    29. Choi, S.W., Y. Zhang, and Y.N. Xia, Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device. Advanced Functional Materials, 2009. 19(18): p. 2943-2949.
    30. Sung-Wook Choi, Y.-C.Y., Yu Zhang, Hsing-Wen Sung, and Younan Xia, Uniform Beads with Controllable Pore Sizes for Biomedical Applications. small, 2010. 6(No. 14): p. 1492–1498.
    31. Choi, S.W., Y. Zhang, and Y.N. Xia, A Temperature-Sensitive Drug Release System Based on Phase-Change Materials. Angewandte Chemie-International Edition, 2010. 49(43): p. 7904-7908.
    32. Kumar, M.N.V.R., et al., Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
    33. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
    34. Montembault, A., C. Viton, and A. Domard, Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules, 2005. 6(2): p. 653-662.
    35. Chiu, Y.L., et al., Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 2009. 5(5): p. 962-965.
    36. Chiu, Y.L., et al., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility. Biomaterials, 2009. 30(28): p. 4877-4888.
    37. Andreev, O.A., et al., Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(19): p. 7893-7898.
    38. Gallagher, F.A., et al., Magnetic resonance imaging of pH in vivo using hyperpolarized (13)C-labelled bicarbonate. Nature, 2008. 453(7197): p. 940-U73.
    39. Masoud, H. and A. Alexeev, Controlled release of nanoparticles and macromolecules from responsive microgel capsules. ACS Nano, 2012. 6(1): p. 212-9.
    40. Sankaranarayanan, J., et al., Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano, 2010. 4(10): p. 5930-6.
    41. Torchilin, V.P., Targeted pharmaceutical nanocarriers for cancer therapy and Imaging. Aaps Journal, 2007. 9(2): p. E128-E147.
    42. Shenoy, D., et al., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharmaceutical Research, 2005. 22(12): p. 2107-2114.
    43. Shenoy, D., et al., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Molecular Pharmaceutics, 2005. 2(5): p. 357-366.
    44. Shenoy DB, A.M., Poly(ethylene oxide)-modified poly(epsiloncaprolactone)nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005(293): p. 261-70.
    45. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors - a Review. Cancer Research, 1989. 49(23): p. 6449-6465.
    46. Gerweck, L.E. and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 1996. 56(6): p. 1194-1198.
    47. Wike-Hooley, J.L., J. Haveman, and H.S. Reinhold, The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol, 1984. 2(4): p. 343-66.
    48. Ganta, S., et al., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release, 2008. 126(3): p. 187-204.
    49. Zhang, L.Y., et al., Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Advanced Materials, 2007. 19(19): p. 2988-+.
    50. Chiu, Y.L., et al., The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. Journal of Controlled Release, 2010. 146(1): p. 152-159.
    51. John J. Bozzola, L.D.R., Electron Microscopy, 2nd edition.
    52. 沈書甄, 儀器原理與應用.
    53. Leary, D.A.S.a.J.J., Principles of Instrumental Analysis,4th edition.
    54. 王應瓊, 儀器分析. 中央圖書出版社.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE