研究生: |
賀翊舜 He, Yi-Shun |
---|---|
論文名稱: |
0.35 μm CMOS紅外線感測器之開發 Development of 0.35 μm CMOS Infrared Sensors |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
鄭裕庭
Cheng, Yu-Ting 黃智方 Huang, Chih-Fang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | CMOS 、紅外線感測 、熱成像陣列 、MOS電晶體 |
外文關鍵詞: | CMOS, IR sensors, focal plane array, MOSFET |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以標準CMOS製程製作了一個紅外線焦平面熱感測陣列,並以PMOS電晶體作為感熱元件,其感測原理為將吸收紅外線熱輻射所產生之溫度差轉換為MOS電晶體的電流變化。有別於其他熱感測較為常見的感測原理,本研究期望透過MOS電晶體作為主動元件的特性,做出一個高響應度的感測陣列,以此驗證MOS電晶體作為感熱元件的高度發展性。
本研究使用 TSMC 2P4M 0.35 μm 製程,製作了8 × 8紅外線感測器陣列,透過讀取電路的設計將PMOS電晶體電流對溫度的變化轉換為電壓。另外設計了兩種不同的電晶體偏壓點,藉此比較電晶體在不同的操作區域下對於紅外線熱感測的效能優劣。在結構方面設計了一套後製程流程以增進感熱元件的溫度變化,其中利用金屬濕蝕刻定義了感熱元件結構形狀,並以矽蝕刻使元件底層的矽基質變薄。經量測後得到電晶體的電流溫度係數在飽和區域與次臨界區域分別為1.78%/K以及4.03%/K,感測器的熱時間常數10.6 ms,而響應度與雜訊等效功率(NEP)在飽和區域下則分別為1.72 x 10^7 V/W以及0.44 pW/Hz^1/2。
In this study, an infrared focal plane array was fabricated with a standard CMOS process, and the thermally isolated PMOS transistors were used as sensing elements. As a temperature sensitive element, a MOS transistor is able to convert the temperature difference generated by the absorption of infrared radiation into the current change of itself. Different from other common sensing principles for infrared thermal detection, the characteristic of MOS transistors as active components would be a great advantage for reaching high responsivity. Thus, this research aims to design and fabricate a PMOS transistors IR focal plane array with high performance, and verify the potential of MOS transistors in infrared sensing.
In this study, the TSMC 2P4M 0.35 μm process was used to fabricate an 8 × 8 infrared sensors array. The change of PMOS transistor current caused by infrared radiation is converted into output voltage through a readout circuit. In addition, two bias points are designed, so we can compare the performance in different operating regions of MOSFETs. A post-process is also designed to improve the thermal isolation of sensors. The structure was defined by metals and would be released by wet etching, while silicon etching was performed in order to decrease the thickness of silicon substrate under sensors. The measured temperature coefficient of current (TCC) in saturation region and subthreshold region are 1.78 %/K and 4.03 %/K respectively. The thermal time constant is 10.6 ms, and responsivity and noise equivalent power (NEP) can reach 1.72 x 10^7 V/W and 0.44 pW/Hz^1/2 respectively in saturation region.
[1] H. K. Xie, and G. K. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS Gyroscope,” IEEE Sensors J., vol. 3, no. 5, pp. 622-631, Oct, 2003.
[2] M. H. Tsai, Y. C. Liu, and W. L. Fang, “A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes,” J. of Microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Dec, 2012.
[3] J. J. Neumann, and K. J. Gabriel, “A fully-integrated CMOS-MEMS audio microphone,” Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, pp. 230-233, 2003.
[4] N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei, and K. Machida, “Novel surface structure and its fabrication process for MEMS fingerprint sensor,” IEEE Trans. on Elec. Dev., vol. 52, no. 5, pp. 1026-1032, May, 2005.
[5] H. H. Tsai, C. F. Lin, Y. Z. Juang, I. L. Wang, Y. C. Lin, R. L. Wang, and H. Y. Lin, “Multiple type biosensors fabricated using the CMOS BioMEMS platform,” Sensors and Actuators B-Chemical, vol. 144, no. 2, pp. 407-412, Feb 17, 2010.
[6] M. Kimata, “Uncooled infrared focal plane arrays,” IEEJ Trans. on Electrical and Electronic Engineering, vol. 13, no. 1, pp. 4-12, Jan, 2018.
[7] F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays - A review,” MEMS/MOEMS Technologies and Applications Iii, vol. 6836, 2008.
[8] L. Yu, Y. Z. Guo, H. Y. Zhu, M. C. Luo, P. Han, and X. L. Ji, “Low-cost microbolometer type infrared detectors,” Micromachines, vol. 11, no. 9, Sep, 2020.
[9] Y. H. Han, I. H. Choi, H. K. Kang, J. Y. Park, K. T. Kim, H. J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, no. 1-2, pp. 260-264, Feb 3, 2003.
[10] N. Chi-Anh, H. J. Shin, K. T. Kim, Y. H. Han, and S. Moon, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer,” Sensors and Actuators a-Physical, vol. 123-24, pp. 87-91, Sep 23, 2005.
[11] S. K. Ajmera, A. J. Syllaios, G. S. Tyber, M. F. Taylor, and R. E. Hollingsworth, “Amorphous silicon thin-films for uncooled infrared microbolometer sensors,” Infrared Technology and Applications Xxxvi, Pts 1 and 2, vol. 7660, 2010.
[12] M. Garcia, R. Ambrosio, A. Torres, and A. Kosarev, “IR bolometers based on amorphous silicon germanium alloys,” J. of Non-Crystalline Solids, vol. 338, pp. 744-748, Jun 15, 2004.
[13] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sensors and Actuators a-Physical, vol. 109, no. 1-2, pp. 102-113, Dec 1, 2003.
[14] F. Haenschke, E. Kessler, U. Dillner, A. Ihring, U. Schinkel, and H. G. Meyer, “A new high detectivity room temperature linear thermopile array with a D* greater than 2 x 109 cmHz1/2/W based on organic membranes,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 19, no. 12, pp. 1927-1933, Dec, 2013.
[15] H. C. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, “Cmos-based thermopiles using vertically integrated double polycrystalline silicon layers,” 26th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2013), pp. 429-432, 2013.
[16] G. Milde, C. Hausler, G. Gerlach, H. A. Bahr, and H. Balke, “3-D modeling of pyroelectric sensor arrays part II: modulation transfer function,” IEEE Sensors J., vol. 8, no. 11-12, pp. 2088-2094, Nov-Dec, 2008.
[17] J. Yun, and S. S. Lee, “Human movement detection and identification using pyroelectric infrared sensors,” Sensors, vol. 14, no. 5, pp. 8057-8081, May, 2014.
[18] T. D. Binnie, H. J. Weller, Z. Q. He, and D. Setiadi, “An integrated 16 x 16 PVDF pyroelectric sensor array,” IEEE Trans. on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, no. 6, pp. 1413-1420, Nov, 2000.
[19] L. Dong, R. F. Yue, and L. T. Liu, “Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements,” J. of Microelectromech. Syst., vol. 14, no. 5, pp. 1167-1177, Oct, 2005.
[20] A. Zviagintsev, T. Blank, I. Brouk, S. Bar-Lev, S. Stolyarova, A. Svetlitza, I. Bloom, A. Nemirovsky, and Y. Nemirovsky, “Micro-machined CMOS-SOI transistor (TMOS) thermal sensor operating in air,” 2017 IEEE Int. Conf. on Microwaves, Antennas, Communications and Electronic Systems (Comcas), pp. 350-353, 2017.
[21] T. Blank, I. Brouk, S. Bar-Lev, G. Amar, E. Meimoun, S. Bouscher, M. Meltsin, M. Vaiana, A. Maierna, M. E. Castagna, G. Bruno, and Y. Nemirovsky, “Non-imaging digital CMOS-SOI-MEMS uncooled passive infra-red sensing systems,” IEEE Sensors J., vol. 21, no. 3, pp. 3660-3668, Feb 1, 2021.
[22] L. Gitelman, S. Stolyarova, S. Bar-Lev, Z. Gutman, Y. Ochana, and Y. Nemirovsky, “CMOS-SOI-MEMS transistor for uncooled IR imaging,” IEEE Trans. on Elec. Dev., vol. 56, no. 9, pp. 1935-1942, Sep, 2009.
[23] A. Zviagintsev, T. Blank, I. Brouk, I. Bloom, and Y. Nemirovsky, “Modeling the performance of nano machined CMOS transistors for uncooled IR sensing,” IEEE Trans. on Elec. Dev., vol. 64, no. 11, pp. 4657-4663, Nov, 2017.
[24] E. Socher, S. M. Beer, and Y. Nemirovsky, “Temperature sensitivity of SOI-CMOS transistors for use in uncooled thermal sensing,” IEEE Trans. on Elec. Dev., vol. 52, no. 12, pp. 2784-2790, Dec, 2005.
[25] T. Saraf, I. Brouk, S. B. L. Shefi, A. Unikovsky, T. Blank, P. K. Radhakrishnan, and Y. Nemirovsky, “CMOS-SOI-MEMS uncooled infrared security sensor with integrated readout,” IEEE J. of the Elec. Dev. Soc., vol. 4, no. 3, pp. 155-162, May, 2016.
[26] T. W. Shen, K. C. Chang, C. M. Sun, and W. L. Fang, “Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design,” J. of Micromech. and Microeng., vol. 29, no. 2, Feb, 2019.
[27] C. Minassian, J. L. Tissot, M. Vilain, O. Legras, S. Tinnes, B. Fieque, J. M. Chiappa, and P. Robert, “Uncooled amorphous silicon TEC-less 1/4 VGA IRFPA with 25 pixel-pitch for high volume applications,” Infrared Technology and Applications Xxxiv, Pts 1 and 2, vol. 6940, 2008.
[28] H. Jerominek, M. Renaud, N. R. Swart, F. Picard, T. D. Pope, M. Levesque, M. Lehoux, G. Bilodeau, M. Pelletier, D. Audet, and P. Lambert, “Micromachined VO2-based uncooled IR bolometric detector arrays with integrated CMOS readout electronics,” Micromachined Dev. and Components Ii, vol. 2882, pp. 111-121, 1996.
[29] L. Vadasz, and A. S. Grove, “Temperature dependence of MOS transistor characteristics below saturation,” IEEE Trans. on Elec. Dev., vol. Ed13, no. 12, pp. 863-+, 1966.
[30] G. Groeseneken, J. P. Colinge, H. E. Maes, J. C. Alderman, and S. Holt, “Temperature-dependence of threshold voltage in thin-film SOI MOSFETs,” IEEE Elec. Dev. Lett., vol. 11, no. 8, pp. 329-331, Aug, 1990.
[31] Z. D. Prijic, S. S. Dimitrijev, and N. D. Stojadinovic, “Analysis of temperature-dependence of CMOS transistors threshold voltage,” Microelectronics and Reliability, vol. 31, no. 1, pp. 33-37, 1991.
[32] F. Tankut, M. H. Cologlu, H. Askar, H. Ozturk, H. K. Dumanli, F. Oruc, B. Tilkioglu, B. Ugur, O. S. Akar, M. Tepegoz, and T. Akin, “An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology,” Infrared Technology and Applications Xliii, vol. 10177, 2017.
[33] X. J. Xue, H. Xiong, Z. Song, Y. X. Du, D. Wu, L. Y. Pan, and Z. Y. Wang, “Silicon diode uncooled FPA with three-dimensional integrated CMOS readout circuits,” IEEE Sensors J., vol. 19, no. 2, pp. 426-434, Jan 15, 2019.
[34] D. S. Tezcan, S. Eminoglu, and T. Akin, “A low-cost uncooled infrared microbolometer detector in standard CMOS technology,” IEEE Trans. on Elec. Dev., vol. 50, no. 2, pp. 494-502, Feb, 2003.
[35] C. C. Liu, and C. H. Mastrangelo, “A CMOS uncooled heat-balancing infrared imager,” IEEE J. of Solid-State Circuits, vol. 35, no. 4, pp. 527-535, Apr, 2000.
[36] K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin-film thermal IR detectors,” Infrared Physics, vol. 34, no. 4, pp. 379-387, Aug, 1993.
[37] D. Fujisawa, Y. Kosasayama, T. Takikawa, H. Hata, T. Takenaga, T. Satake, K. Yamashita, and D. Suzuki, “Implementation of SOI diode uncooled IRFPA in TEC-less and shutter-less operation,” Infrared Technology and Applications Xliv, vol. 10624, 2018.
[38] T. Wada, H. Nagata, H. Ikeda, Y. Arai, M. Ohno, and K. Nagase, “Development of low power cryogenic readout integrated circuits using fully-depleted-silicon-on-insulator CMOS technology for far-infrared image sensors,” J. of Low Temperature Physics, vol. 167, no. 5-6, pp. 602-608, Jun, 2012.
[39] F. Z. Meng, Y. Q. Zhao, J. W. Jiang, M. Qu, and G. F. Wang, “Analysis and design of a high performance infrared detector readout circuit,” Proceedings of the 2009 12th International Symposium on Integrated Circuits (Isic 2009), pp. 490-493, 2009.
[40] A. Svetlitza, T. Blank, S. Stolyarova, I. Brouk, S. Bar-Lev Shefi, and Y. Nemirovsky, “CMOS-SOI-MEMS thermal antenna and sensor for uncooled THz imaging,” IEEE Trans. on Elec. Dev., vol. 63, no. 3, pp. 1260-1265, Mar, 2016.