研究生: |
賈亞庫馬 Jayakumar |
---|---|
論文名稱: |
銠金屬催化之碳-氫鍵活化反應 以合成含氮雜環衍生物及相關天然物之研究 Rhodium(III)-Catalyzed C–H Activation as a Key Step for the Synthesis of N-Heterocycles and Related Natural Products |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
劉瑞雄
Liu, Rai-Shung 蔡易州 Tsai, Yi-Chou 鄭建鴻 Cheng, Chien-Hong 莊士卿 Chuang, Shih-Ching 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 248 |
中文關鍵詞: | 銠金屬 、碳氫鍵活化 、異喹啉 、醛 、炔 、胺 、苯亞胺 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Transition-metal-catalyzed C‒C bond formation reaction by uniting readily available π-components is an attractive strategy to synthesis biologically important compounds in a single operation with high atom-efficacy. Particularly, C H bond activation reactions are experienced method to synthesis of natural products and biologically important compounds in a highly regioselective manner. The C H functionalization of aryl aldehydes with amines and alkynes to afford highly substituted isoquinolines. On the other hand multiple C H activations of N-hyroxybenzamidines with alkynes afforded highly substituted hetroaromatic compounds in one-pot manner. For better understanding, I divided this thesis into four chapters. The first three chapters describe about rhodium-catalyzed inter and intramolecular C-H activation/annulation of aldehydes with amines and alkynes or (amino-alkynes). The final chapter describe about the multiple C H activations of N-hyroxybenzamidines or (aryl nitrile and amines) with alkynes using rhodium(III) as the catalyst.
Chapter 1 describes a new method for the synthesis of isoquinolinium salts from the oxidative coupling/annulation of alkynes with aldehydes and amines via Rh(III) catalysis. The proposed mechanism is strongly supported by the isolation of a five-membered rhodacycle and an intermediate organic compound. This protocol successfully applied to the total synthesis of Oxychelerythrine with 66% overall yield.
Chapter 2 deals with the synthesis of quaternary protoberberine alkaloids (QPA) from aldehydes and aminoalkynes with Rh(III)-salt complex. The reaction can be applied to a straight forward synthesis of 13-substituted protoberberine natural products.
Chapter 3 illustrates a rhodium-catalyzed synthesis of N-heterocycles from aldehydes, amines and alkynes by C-H activation method. This is the first example of an imine-directed synthesis of highly substituted isoquinolones in one-pot.
Chapter 4 is about the synthesis of polyhetreoaromatics from N-benzamidines and alkynes by multiple rhodium-catalyzed C H activation and annulation steps. A possible mechanism is proposed involving multi-step chelation-assisted ortho-C–H activation, alkyne insertion and reductive elimination
Chapter-1
1.8. References:
[1] K. M. Engle, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 14137.
[2] a) B. Sezen, D. Sames, J. Am. Chem. Soc. 2003, 125, 5274; b) B. Glover, K. A. Harvey, B. Liu, M. J. Sharp, M. F. Tymoschenko, Org. Lett. 2003, 5, 301; c) M. Toyota, A. Ilangovan, R. Okamoto, T. Masaki, M. Arakawa, M. Ihara, Org. Lett. 2002, 4, 4293; d) C. C. Hughes, D. Trauner, Angew. Chem. Int. Ed. 2002, 41, 1569; e) E. J. Henessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084.
[3] D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624.
[4] A. J. Canty, G. van Koten, Acc. Chem. Res. 1995, 28, 406.
[5] A. D. Ryabov, I. K. Sakodinskaya, A. K. Yatsimirsky, J. Chem. Soc., Dalton Trans. 1985, 2629.
[6] a) Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, Dalton Trans. 2009, 5820; b) D. Lapointe, K. Fagnou, Chem. Lett. 2011, 111, 1315.
[7] a) B. D. Krane, M. O. Fagbule, M. Shamma, J. Nat. Prod. 1984, 47, 1; b) B. Gerhard, T. Gulder, U. Hentschel, F. Meyer, H. Moll, J. Morschhauser, D. V. A. Ponte-Sucre, W. Ziebuhr; A. Stich, R. Brun, W. E. G. Muller, V. Mudogu, Int. Patent, WO 2008/037482A1, 2008; c) M. S. Cushman, A. S. Ioanoviciu, Y. G. Pommier, WO 2005/089294A2, 2005; d) N-laurylisoquinolinium bromide, hexadecamethylenediisoquinolium dichloride, and quinapril are popular drug molecules.
[8] a) R. M. Scarborough, K. A. Kane-Maguire, C. K. Marlowe, M. S. Smyth, X. Zhang, US Patent, US 2005/0113399A1, 2005; b) N. I. Alun, P. K. Mark, B. P Allen, Int. Patent, WO 2006/067444A1, 2006; c) M. Barrie, W. Paul, Int. Patent, WO 2007/149031A1, 2007; d) L. J. Adams, Int. Patent, WO 2004/108682A2, 2004.
[9] The Chemistry of Hetrocyclic Compounds: Isoquinolines; G. M. Coppola, H. F. Schuster, Eds. John Wiley & Sons: New York, 1981; Vol. 38, Part 3.
[10] a) X. Xu, S. Guo, Q. Dang, J. Chen, X. Bai, J. Comb. Chem. 2007, 9, 773; b) T. Ishikawa, K. Shimooka, T. Narioka, S. Noguchi, T. Saito, A. Ishikawa, E. Yamazaki, T. Harayama, H. Seki, K. Yamaguchi, J. Org. Chem. 2000, 65, 9143; c) A. Bischler, B. Napieralski, Ber. Dtsch. Chem. Ges. 1893, 26, 1903; For Pomeranz-Fritsch examples, see: d) E. V. Brown, J. Org. Chem. 1977, 42, 3208; e) W. Herz, S. Tocker, J. Am. Chem. Soc. 1955, 77, 6355; f) P. Fritsch, Ber. Dtsch. Chem. Ges. 1893, 26, 419; g) C. Pomeranz, Monatsh. Chem. 1893, 14, 116; For Pictet-Spengler examples, see: h) S. W. Youn, J. Org. Chem. 2006, 71, 2521; i) A. Pictet, T. Spengler, Chem. Ber. 1911, 44, 2030.
[11] a) G. Wu, A. L. Rheingold, S. J. Geib, R. F. Heck, Organometallics, 1987, 6, 1941; b) G. Wu, S. J. Geib, A. L. Rheingold, R. F. Heck, J. Org. Chem. 1988, 53, 3238.
[12] S.-G. Lim, J.-H. Lee, C. W. Moon, C. J.-B Hong, C.-H. Jun, Org. Lett. 2003, 5, 2759.
[13] L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414.
[14] N. Guimond, K. Fagnou, J. Am.Chem. Soc. 2009, 131, 12050.
[15] a) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688; b) P. C. Too, S. H. Chua, S. H. Wong, S. Chiba. J. Org. Chem. 2011, 76, 6159.
[16] a) J. F. Berry, F. A. Cotton, P. Lei, T. B. Lu, C. A. Murillo, Inorg. Chem. 2003, 42, 3534; b) S. Gaillard, M. K. Elmkaddem, C. Fischmeister, C. M. Thomas, J. L. Renaud, Tetrahedron Lett. 2008, 49, 3471; c) H. Y. Gong, X. H. Zhang, D. X. Wang, H. W. Ma, Q. Y. Zheng, M. X. Wang, Chem. Eur. J. 2006, 12, 9262; d) J. M. Hancock, S. A. Jenekhe, Macromolecules 2008, 41, 6864; e) H. Hasan, U. K. Tan, Y. S. Lin, C. C. Lee, G. H. Lee, T. W. Lin, S. M. Peng, Inorg. Chim. Acta 2003, 351, 369; f) P. D. Vellis, J. A. Mikroyannidis, C. N. Lo, C. S. Hsu, J. Polym. Sci., Polym. Chem. 2008, 46, 7702; g) E. X. Zhang, D. X. Wang, Q. Y. Zheng, M. X. Wang, Org. Lett. 2008, 10, 2565.
[17] a) Q. Huang, J. A. Hunter, R. C. Larock, Org. Lett. 2001, 3, 2973; b) K. R. Roesch, H. Zhang, R. C. Larock, J. Org. Chem. 2001, 66, 8042.
[18] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179; b) R. P. Korivi, W.-J. Wu, C.-H. Cheng, Chem. Eur. J. 2009, 15, 10727; c) R. P. Korivi, W.-J. Wu, C.-H. Cheng, Chem. Eur. J. 2010, 16, 282.
[19] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764.
[20] a) C.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; d) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; f) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212
[21] a) D. Gnecco, C. Marazano, R. G. Enriquez, J. L. Teran, M. R. Sanchez. S. A. Galindo, Tetrahedron: Asymmetry 1998, 9, 2027; b) S. D. Burke, R. L. Danheiser, Oxidizing and Reducing Agents, Wiley, New York, 2000, p. 154.
[22] a) M. Hanaoka, T. Motonishi, C. Mukai. J. Chem. Soc., Perkin Trans. 1, 1986, 2253; b) T. Harayama, T. Akiyama, K. Kawano. Chem. Pharm. Bull. 1996, 44(8) 1634; c) T. N. Le, W.-J. Cho, Chem. Pharm. Bull. 2005, 53(1) 118.
[23] a) T. K. Hoffmann, K. Leenen, D. Hafner, V. Balz, C. Gerharz, A. Grund, H. Ballo, U. Hauser, H. Bier, Anti-Cancer Drugs, 2002, 13, 93; b) H. Lou, M. Ookhtens, A. Stolz, N. Kaplowitz, Am. J. Physiol. Gastrointest. Liver Psysiol., 2003, 285, G1335; c) S.-L. Chan, M. C. Lee, K. O. Tan, L.-K. Yang, A. S. Y. Lee, H. Flotow, N. Y. Fu, M. S. Butler, D. D. Soejarto, A. D. Buss, V. C. Yu, J. Biol.Chem., 2003, 278, 20453..
[24] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
Chapter-2
References:
[1] For berberine synthesis reviews, see; a) J. Stcckigt, A.-P, Antonchick, F. Wu, H. Waldmann, Angew. Chem. 2011, 123, 8692-8719; Angew. Chem. Int. Ed. 2011, 50, 8538-8564; b) D.-Z. Wu, J.-Y, Yuan, H.-L. Shi, Z.-B Hu, Br. J. Pharmacol. 2008, 153, 1203-1213; c) T. Hashimoto, Y. Yamada, Annu. Rev., Plant. Physiol. Mol. Biol. 1994, 45, 257-285.
[2] a) L. Grycova, J. Dostal, R. Marek, Phytochemistry 2007, 68, 150-175; b) K. Iwasa, M. Moriyasu, T. Yamori, T. Turuo, D.-U. Lee, W. Wiegrebe, J. Nat. Prod. 2001, 64, 896-898; c) A. Singh, S. Duggal, N. Kaur, J. Singh, J. Nat. Prod. 2010, 3, 64; d) T.-M. Hung, P.-T. Thuong, N.-T. Nhan, N.-T. Thanh Mai, T.-L. Quan, J.-S. Choi, M.-H. Woo, B.-S. Min, K.-W. Bae, Nat. Prod. Sci. 2011, 17, 108-112.
[3] Synthesis and bio-activity of protoberberine alkaloids see: a) M. Hanaoka, S. Yoshida, C. Mukai, J. Chem. Soc., Chem. Commun. 1985, 1257-1258; b) X.-Y. Cheng, Y. Shi, S.-L. Zhen, H. Sun, W. Jin, J. Chromat. Sci. 2010, 48, 441-444; c) Z. Iparissiderso, B. Fichtnerja, N. Plawskbia, L. Nalliah, D. B. Maclean, Can. J. Chem. 1980, 58, 2770-2779; d) Y.-H. Li, P. Yang, W.-J. Kong, Y.-X. Wang, C.-Q. Hu, Z.-Y. Zuo, Y.-M. Wang, H. Gao, L.-M. Gao, Y.-C. Feng, N.-N. Du, Y. Liu, D.-Q. Song, J.-D. Jiang, J. Med. Chem. 2009, 52, 492-501; e) D.-U. Lee, Y.-J. Kang, M.-K. Park, Y.-S. Lee, H.-G. Seo, T.-S. Kim, C.-H. Kim, K.-C. Chang, Life. Sci. 2003, 73, 1401-1412; f) L. Chen, L. Feng, Y. Li, G. Wu, US Patent, US 2010/0286396A1, 2010; g) Y.-X. Liu, C.-L. Xiao, Y.-X. Wang, Y.-H. Li, Y.-H. Yang, Y.-B. Li, C.-W. Bi, L.-M. Gao, J.-D. Jiang, D.-Q. Song, Eur. J. Med. Chem. 2012, 52, 151-158; h) J.-B. Bremner, S. Samosorn, Aus. J. Chem. 2003, 56, 871-873; l) G.-E. Lee, H.-S. Lee, S.-D. Lee, J.-H. Kim, W.-K. Kim, Y.-C. Kim, Bioorg. Med. Chem. Lett. 2009, 19, 954-958; m) 1) X. Bian, L. He, G. Yang, Bioorg. Med. Chem. Lett. 2006, 16, 1380-1383.
[4] F. Y. Tang, A. G. Nie, J. Clin. Exp.Med. 2006, 5, 185.
[5] a) A. P. Sagare, Y. L. Lee, T. C. Lin, C. C. Chen, Plant Sci, 2000, 160, 139; b) L. Z. Zhang, J. Guiyang. Med. Coll. 2006, 31, 280.
[6] a) Y. Q. Qing, Q. Z. Yang, Med. J. 1978, 10, 450; b) B. R. Jang, Q. X. Wu, H. L. Shi, Acta pharmaceutica Sinica 1982, 17, 61.
[7] X.-Y. Cheng, Y. Shi, S.-L. Zhen, H. Sun, W. Jin, J. Chromat. Sci. 2010, 48, 441.
[8] a) C.-H. Jun, C. W. Moon, D.-Y. Lee. Chem. Eur. J. 2002, 8, 2422-2428; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 871-877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; d) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222; e) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu. Angew. Chem. 2009, 121, 5196-5217; Angew. Chem. Int. Ed. 2009, 48, 5094-5115; f) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010 327, 315-319; g) T. W. Lyons, M. S. Sanford. Chem. Rev. 2010, 110, 1147-1169; h) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; i) J. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170-1214; j) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45,788-802; k) M. Mewald, J. A. Schiffner, M. Oestreich, Angew. Chem. 2012, 124, 1797-1799; Angew. Chem. Int. Ed. 2012, 51, 1763-1765.
[9] a) M. V Pham, N. Cramer, Angew. Chem. 2014, 126, 3552-3555; Angew. Chem. Int. Ed. 2014, 53, 3484-3487.; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; c) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651-3678; d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev.,2012, 112, 5879-5918; e) L. Ackermann, Acc. Chem. Res., 2014, 47, 281-295; f) F.W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31-41.
[10] R. K. Thalji, K. A. Ahrendt, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2001, 123, 9692.
[11] T. A. Davis, T. K. Hyster, T. Rovis, Angew. Chem. 2013, 125, 14431; Angew. Chem. Int. Ed. 2013, 52, 14181.
[12] B. Ye, P. A. Donets, N. Cramer, Angew. Chem. 2014, 126, 517; Angew. Chem. Int. Ed. 2014, 53, 507.
[13] Z. Shi, M. Boultadakis-Arapinis, D. C. Koester, F. Glorius, Chem. Commun. 2014, 50, 2650.
[14] X. Xianxiu, Y. Liu, C.-M. Park, Angew. Chem. 2012, 124, 9506; Angew. Chem. Int. Ed. 2012, 51, 9372.
[15] N. Quinones, A. Seoane, R. Garcıa-Fandino, J. L. Mascarenas, M. Gulıas, Chem. Sci. 2013, 4, 2874.
[16] Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. 2013, 125, 5503; Angew. Chem. Int. Ed. 2013, 52, 5393.
[17] a) K. Parthasarathy, N. Senthilkumar, J. Jayakumar, C.-H. Cheng, Org. Lett. 2012, 14, 3481; b) C.-Z, Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang, C.-H. Cheng, Chem. Eur. J. 2013, 19, 14181; c) C. -Z, Luo, P. Gandeepan, C.-H. Cheng, Chem. Commun. 2013, 49, 8528; d) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. 2012, 124, 201; Angew. Chem. Int. Ed. 2012, 51, 197; e) d) K. Muralirajan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 6198; f) N. Senthilkumar, P. Gandeepan, J. Jayakumar, C.-H. Cheng, Chem. Commun. 2014, 50, 3106.
[18] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764-770.
[19] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764.
[20] a) C.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; d) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212.
[21] a) D. Gnecco, C. Marazano, R. G. Enriquez, J. L. Teran, M. R. Sanchez. S. A. Galindo, Tetrahedron: Asymmetry 1998, 9, 2027; b) S. D. Burke, R. L. Danheiser, Oxidizing and Reducing Agents, Wiley, New York, 2000, p. 154.
[22] a) M. Hanaoka, T. Motonishi, C. Mukai. J. Chem. Soc., Perkin Trans. 1, 1986, 2253; b) T. Harayama, T. Akiyama, K. Kawano. Chem. Pharm. Bull. 1996, 44(8) 1634; c) T. N. Le, W.-J. Cho, Chem. Pharm. Bull. 2005, 53(1) 118.
[23] a) T. K. Hoffmann, K. Leenen, D. Hafner, V. Balz, C. Gerharz, A. Grund, H. Ballo, U. Hauser, H. Bier, Anti-Cancer Drugs, 2002, 13, 93; b) H. Lou, M. Ookhtens, A. Stolz, N. Kaplowitz, Am. J. Physiol. Gastrointest. Liver Psysiol., 2003, 285, G1335; c) S.-L. Chan, M. C. Lee, K. O. Tan, L.-K. Yang, A. S. Y. Lee, H. Flotow, N. Y. Fu, M. S. Butler, D. D. Soejarto, A. D. Buss, V. C. Yu, J. Biol.Chem., 2003, 278, 20453..
[24] D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
Chapter-3
References:
[1] B. D. Krane, M. Shamma, J. Nat. Prod. 1982, 45, 377.
[2] V. A. Glushkov, Y. V. Shklyaev, Chem. Heterocycl. Compd. 2001, 37, 663.
[3] G. R. Pettit, Y. H. Meng, D. L. Herald, K. A. N. Graham, R. K. Pettit, D. L. Doubek, J. Nat. Prod. 2003, 66, 1065.
[4] a) J. H. Rigby, U. S. M. Maharoof, M. E. Mateo, J. Am. Chem. Soc. 2000, 122, 6624; b) T. Hudlicky, U. Rinner, D. Gonzalez, H. Akgun, S. Schilling, P. Siengalewicz, T. A. Martinot, G. R. Pettit, J. Org. Chem. 2002, 67, 8726.
[5] a) F. Coelho, D. Veronese, E. C. S. Lopes, R. C. Rossi, Tetrahedron Lett. 2003, 44, 5731; b) H. Heaney, K. F. Shuhaibar, Synlett 1995, 47.
[6] a) A. Saeed, Z. Ashraf, Pharm. Chem. J. 2008, 42, 277; b) J. F. Guastavino, S. M. Barolo, R. A. Rossi, Eur. J. Org. Chem. 2006, 17, 3898; c) K. B. Simonsen, J. Kehler, K. Juhl, N. Khanzhin, S. M. Nielsen, Patent WO2008131779A1; d) Y. H. Wong, M. K. C. Ho, Y. Q. Hu, D. C. New, X. X. He, H. H. Pang, Patent WO2008092292A1; e) O. Plettenburg, K. Lorenz, J. Goerlitzer, M. Loehn, Patent WO2008077555A2; f) Y. Asano, S. Kitamura, T. Ohra, F. Itoh, M. Kajino, T. Tamura, M. Kaneko, S. Ikeda, H. Igata, T. Kawamoto, S. Sogabe, S. Matsumoto, T. Tanaka, M. Yamaguchi, H. Kimura, S. Fukumoto, Bioorg. Med. Chem. 2008, 16, 4699.
[7] a) T. Matsui, T. Sugiura, H. Nakui, S. Iguch, S. Shigeoka, H. Tukedu, T. Odagaki, Y. Ushio, K. Ohmoto, M; Iwamani, S. Yamazaki, T. Arai, M. Kawamura, J. Med. Chem. 1992, 35, 3307; b) S. W. Li, M. G. Nair, D. M. Edwards, R. L. Kisluick, Y. Gaument, I. K. Dev, D. S. Duch, J. Humphreys, G. K. Smith, R. Ferone, J. Med. Chem. 1991, 34, 2746.
[8] G. S. Poindexter, J. Org. Chem. 1982, 47, 3787.
[9] T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 1432.
[10] H. Gao, J. Zhang, Adv. Synth. Catal. 2009, 351, 85.
[11] V. R. Batchu, D. K. Barange, D. Kumar, B. R. Sreekanth, K. Vyas, E. A. Reddy, M. Pal, Chem. Commun. 2007, 19, 1966.
[12] C.-C. Liu, K. Parthasarathy , C.-H. Cheng, Org. Lett. 2010, 12, 3518.
[13] F. Wang,H. Liu, H. Fu, Y. Jiang, Y. Zhao, Org. Lett. 2009, 11, 2469.
[14] Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058.
[15] T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085.
[16] Z. Zheng, H. Alper, Org. Lett. 2008, 10, 4903.
[17] A. C. Tadd, A. Matsuno, M. R. Fielding, M. C. Willis, Org. Lett. 2009, 11, 583; b) A. Dieudonne-Vatran, M. Azoulay, J. C. Florent, Org. Biomol. Chem. 2012, 10, 2683.
[18] N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449. b) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908.
[19] T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565.
[20] L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. 2011, 123, 6503; Angew. Chem. Int. Ed. 2011, 50, 6379.
[21] H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236.
[22] H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952.
[23] J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-Li. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492.
[24] H. Wang, C. Grohmann, C. Nimphius, F. Glorius, J. Am. Chem. Soc. 2012, 134, 19592.
[25] S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2014.
[26] Comprehensive organic functional group transformations, 1st ed.; Katritzky, A. R., Cohn, O. M., Eds.; Rees, C. W.; Pergamon: Chichester, England, 1991; Vol. 2, p 328; Vol. 3, p 419. (4) (a) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941. (b) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. J.Org. Chem. 1988, 53, 3238.
[27] a) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941. b) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. J.Org. Chem. 1988, 53, 3238. c) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 2001, 66, 8042. d) Dai, G.; Larock, R. C. Org. Lett. 2002, 4, 193 and references therein e) Dai, G.; Larock, R. C. 2003, 68, 920. f) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553.
[28] D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
Chapter-4
References:
[1] For recent examples of biological activities in benzonaphthyridine series, see: (a) S. Aoki, D. Kong, H. Suna, Y. Sowa, T. Sakai, A. Setiawan, M. Kobayashi, Biochem. Biophys. Res. Commun. 2006, 342, 101; b) Z. Ma, Z. Xiang, T. Luo, K. Lu, Z. Xu, J. Chen, Z. Yang, J. Comb. Chem. 2006, 8, 696; c) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792; d) A. Hinschberger, S. Butt, V. Lelong, M. Boulouard, A. Dumuis, F. Dauphin, R. Bureau, B. Pfeiffer, P. Renard, S. Rault, J. Med. Chem. 2003, 46, 138.
[2] For recent examples in phenanthridine series, see: a) A. D. C. Parenty, L. V. Smith, K. M. Guthrie, D. Long, J. Plumb, R. Brown, L. Cronin, J. Med. Chem. 2005, 48, 4504; b) D. Ferraris, R. P. Ficco, T. Pahutski, S. Lautar, S. Huang, J. Zhang, V. Kalish, Bioorg. Med. Chem. Lett. 2003, 13, 2513.
[3] Y. H. Hsiang, M. Lihou, L. Liu, Arrest or replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989, 49, 5077; b) Y. Pommier, Chem. Biol. 2013, 8, 82; c) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792.
[4] M. Jin, W. Zhao, Y. Zhang, M. Kobayashi, H. Duan, D. Kong, Int. J. Mol. Sci. 2011, 12, 7352.
[5] C. Bailly, Chem. Rev. 2012, 112, 3611.
[6] J. Deguchi, T. Shoji, A. E. Nugroho, Y. Hirasawa, T. Hosoya, O. Shirota, K. Awang, A. H. A. Hadi, H. Morita, J. Nat. Prod. 2010, 73, 1727.
[7] F. Guillier, F. Nivoliers, A. Godard, F. Marsais, G. Queguiner, M. A. Siddiqui, V. Snieckus, J. Org. Chem. 1996, 60, 292.
[8] P. L. Ferrarinia, C. Moria, M. Badawneh, V. Calderone, R. Greco, C. Manera, A. Martinelli, P. Nieri, G. Saccomanni, Eur. J. Med. Chem. 2000, 35, 815.
[9] K. Mogilaiah, D. S. Chowdary, R. B. Rao, Ind. J. Chem. 2001, 40B, 43.
[10] G. Roma, M. D. Braccio, G. Grossi, F. Mattioli, M. Ghia, Eur. J. Med. Chem. 2000, 35, 1021.
[11] T.-C. Ko, M.-J. Hour, J.-C. Lien, C.-M. Teng, K.-H. Lee, S.-C. Kuoa, L.-J. Huang, Bioorg. Med. Chem. Lett. 2001, 11, 279.
[12] a) A. S. Noravyan, E. G. S. ParonikyanVartanyan, A. Khim-Farm. Zh. 1985, 19, 790; b) V. P. Litvinov, S. V. Roman, V. D. Dyachenko, Usp. Khim. 2000, 69, 218. [Engl.transl.Russ.Chem.Rev. 2000, 69, 201].
[13] a) L. Chrzastek, W. Sliwa, Aust. J. Chem. 1994, 47, 2129; b) B. Barbara, Z. Teresa, ARKIVOC 2001, 6, 77.
[14] Selected reviews: a) J. E. Anthony, Angew. Chem. 2008, 120, 460; Angew. Chem. Int. Ed. 2008, 47, 452; b) M. D. Watson, A. FethtenkJtter, K. MLllen, Chem. Rev. 2001, 101, 1267; c) U. Mitschke, P. B. Muerle, J. Mater. Chem. 2000, 10, 1471; d) R. G. Harvey, Polycyclic aromatic hydrocarbons, Wiley-VCH, Weinheim, 1996.
[15] a) T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, Appl. Phys. Lett. 2006, 88, 093514; b) T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, J. Appl. Phys. 2005, 98, 074506; c) D. Qin, Y. Tao, J. Appl. Phys. 2005, 97, 044505; d) D. Qin, Y. Tao, Appl. Phys. Lett. 2005, 86, 113507; e) Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129, 1520. See also a review: f) F. Cicoira, C. Santato, Adv. Funct. Mater. 2007, 17, 3421.
[16] a) J. F. Berry, F. A. Cotton, P. Lei, T. B. Lu, C. A. Murillo, Inorg. Chem. 2003, 42, 3534; b) S. Gaillard, M. K. Elmkaddem, C. Fischmeister, C. M. Thomas, J. L. Renaud, Tetrahedron Lett. 2008, 49, 3471; c) H. Y. Gong, X. H. Zhang, D. X. Wang, H. W. Ma, Q. Y. Zheng, M. X. Wang, Chem. Eur. J. 2006, 12, 9262; d) J. M. Hancock, S. A. Jenekhe, Macromolecules 2008, 41, 6864; e) H. Hasan, U. K. Tan, Y. S. Lin, C. C. Lee, G. H. Lee, T. W. Lin, S. M. Peng, Inorg. Chim. Acta 2003, 351, 369; f) P. D. Vellis, J. A. Mikroyannidis, C. N. Lo, C. S. Hsu, J. Polym. Sci., Polym. Chem. 2008, 46, 7702; g) E. X. Zhang, D. X. Wang, Q. Y. Zheng, M. X. Wang, Org. Lett. 2008, 10, 2565.
[17] a) U. H. F. Bunz, Chem.Eur. J. 2009, 15, 6780; b) F. Stockner, R. Beckert, D. Gleich, E. Birckner, W. Gunther, H. Gorls, G. Vaughan, Eur. J. Org. Chem. 2007, 8, 1237; c) M. Matschke, R. Beckert, E. U. Wurthwein, H. Gorls, Synlett 2008, 17, 2633; d) Q. Tang, J. Liu, H. Chan, S. Q. Miao, Chem. Eur. J. 2009, 15, 3965.
[18] a) T. J. Murray, S. C. Zimmerman, J. Am. Chem. Soc. 1992, 114, 4010; b) S. Djurdjevic, D. A. Leigh, H. McNab, S. Parsons, G. Teobaldi, F. Zerbetto, J. Am. Chem. Soc. 2007, 129, 476; c) B. A. Blight, A.; Camara-Campos, S. Djurdjevic, M. Kaller, D. A. Leigh, F. M. McMillan, H. McNab, A. M. J. Slawin, J. Am. Chem. Soc. 2009, 131, 14116.
[19] a) W. J. Behof, D. Wang, W. Niu, C. B. Gorman, Org. Lett. 2010, 12, 2146; b) S. J. Collier, P. Langer, Sci. Synth. 2004, 19, 403.
[20] a) P. G. Dormer, K. K. Eng, R. N. Farr, G. R. Humphrey, J. C. McWilliams, P. J. Reider, J. W. Sager, R. P. Volante, J. Org. Chem. 2003, 68, 467; b) T. R. R. Naik, H. S. B. Naik, H. R. P. Naik, P. J. Bindu, Research Letters in Organic Chemistry 2008, Article ID 594826, pp 4 pages, doi:10.1155/2008/594826; c) T. R. R. Naik, H. S. B. Naik, M. Raghavedra, S. G. K. Naik, Arkivoc, 2006, 15, 84; d) M. Manoj, K. J. R. Prasad, Arkivoc, 2011, 9, 289.
[21] Selected reviews: a) J. E. Anthony, Angew. Chem. 2008, 120, 460; Angew. Chem. Int. Ed. 2008, 47, 452; b) M. D. Watson, A. FethtenkJtter, K. MLllen, Chem. Rev. 2001, 101, 1267; c) U. Mitschke, P. B. Muerle, J. Mater. Chem. 2000, 10, 1471; d) R. G. Harvey, Polycyclic aromatic hydrocarbons, Wiley-VCH, Weinheim, 1996.
[22] a) T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, Appl. Phys. Lett. 2006, 88, 093514; b) T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, J. Appl. Phys. 2005, 98, 074506; c) D. Qin, Y. Tao, J. Appl. Phys. 2005, 97, 044505; d) D. Qin, Y. Tao, Appl. Phys. Lett. 2005, 86, 113507; e) Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129, 1520. See also a review: f) F. Cicoira, C. Santato, Adv. Funct. Mater. 2007, 17, 3421.
[23] J. N. Moorthy, P. Natarajan, P. Venkatakrishnan, D.-F. Huang, T. J. Chow, Org. Lett. 2007, 9, 5215.
[24] a) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem. 2008, 120, 4083; Angew. Chem. Int. Ed. 2008, 47, 4019; b) T. Fukutani, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 2867. d) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744.
[25] a) G. Song, D. Chen, C. Pan, R. H. Crabtree, X. Li, J. Org. Chem. 2010, 75, 7487; b) G. Song, X. Gong, X. Li, J. Org. Chem. 2011, 76, 7583.
[26] X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song, B. Wang. J. Am. Chem. Soc. 2012, 134, 16163.
[27] J. Li, M. John, L. Ackermann, Chem. Eur. J. 2014, 20, 5403.
[28] J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. 2012, 124, 49; Angew. Chem. Int. Ed. 2012, 51, 12343.
[29] L. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. 2013, 125, 1812; Angew. Chem. Int. Ed. 2013, 52, 1768.
[30] a) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740; c) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651. d) F.W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31; e) L. Ackermann, Acc. Chem. Res., 2014, 47, 281; f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev.,2012, 112, 5879; f) J. Li, M. John, L. Ackermann, Chem. Eur. J. 2014, 20, 5403.
[31] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988