簡易檢索 / 詳目顯示

研究生: 賈亞庫馬
Jayakumar
論文名稱: 銠金屬催化之碳-氫鍵活化反應 以合成含氮雜環衍生物及相關天然物之研究
Rhodium(III)-Catalyzed C–H Activation as a Key Step for the Synthesis of N-Heterocycles and Related Natural Products
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 劉瑞雄
Liu, Rai-Shung
蔡易州
Tsai, Yi-Chou
鄭建鴻
Cheng, Chien-Hong
莊士卿
Chuang, Shih-Ching
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 248
中文關鍵詞: 銠金屬碳氫鍵活化異喹啉苯亞胺
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Transition-metal-catalyzed C‒C bond formation reaction by uniting readily available π-components is an attractive strategy to synthesis biologically important compounds in a single operation with high atom-efficacy. Particularly, C H bond activation reactions are experienced method to synthesis of natural products and biologically important compounds in a highly regioselective manner. The C H functionalization of aryl aldehydes with amines and alkynes to afford highly substituted isoquinolines. On the other hand multiple C H activations of N-hyroxybenzamidines with alkynes afforded highly substituted hetroaromatic compounds in one-pot manner. For better understanding, I divided this thesis into four chapters. The first three chapters describe about rhodium-catalyzed inter and intramolecular C-H activation/annulation of aldehydes with amines and alkynes or (amino-alkynes). The final chapter describe about the multiple C H activations of N-hyroxybenzamidines or (aryl nitrile and amines) with alkynes using rhodium(III) as the catalyst.
     Chapter 1 describes a new method for the synthesis of isoquinolinium salts from the oxidative coupling/annulation of alkynes with aldehydes and amines via Rh(III) catalysis. The proposed mechanism is strongly supported by the isolation of a five-membered rhodacycle and an intermediate organic compound. This protocol successfully applied to the total synthesis of Oxychelerythrine with 66% overall yield.

     Chapter 2 deals with the synthesis of quaternary protoberberine alkaloids (QPA) from aldehydes and aminoalkynes with Rh(III)-salt complex. The reaction can be applied to a straight forward synthesis of 13-substituted protoberberine natural products.

     Chapter 3 illustrates a rhodium-catalyzed synthesis of N-heterocycles from aldehydes, amines and alkynes by C-H activation method. This is the first example of an imine-directed synthesis of highly substituted isoquinolones in one-pot.

     Chapter 4 is about the synthesis of polyhetreoaromatics from N-benzamidines and alkynes by multiple rhodium-catalyzed C H activation and annulation steps. A possible mechanism is proposed involving multi-step chelation-assisted ortho-C–H activation, alkyne insertion and reductive elimination


    TABLE OF CONTENTS Page ABSTRACT IV LIST OF SCHEMES VI LIST OF TABLES IX LIST OF FIGURES X ABBREVIATIONS XI LIST OF PUBLICATIONS XIV CHAPTER 1: One-Pot Synthesis of Isoquinolinium Salts by Rhodium Catalyzed C-H Bond Activation: Application to the Total Synthesis of Oxychelerythrine 1 1.1 Introduction 3 1.1.1 General Introduction of Transition Metal-Mediated C–H Bond Functionalization 3 1.1.2 Introduction to Isoquinoline 5 1.1.3 Transistion Metal Catalysed Synthesis of Isoquinoline 6 1.2 Objective 11 1.3 Results and Discussion 11 1.3.1 Optimization Study for Suitable Solvent and Silver Salt 11 1.3.2 Optimization Study for Suitable Oxidant 13 1.3.3 Scope of the Reaction 14 1.4 Mechanistic Discuission 19 1.4.1 Mechanistic as well as Intermediate Isolation 20 1.4.2 Reaction of Rhodacycle I with Phenyl-1-Propyne (2d) and Phenylacetylene 2f 21 1.5 Application to the Total Synthesis of Oxychelerythrine 22 1.6 Conclusion 24 1.6 Experimental Section 24 1.7 Spectroscopic Data 26 1.8 References 39 CHAPTER 2: Synthesis of Quaternary Protoberberine Salts involving Rh(III)-Catalyzed C-H Bond Activation as a Key Step and Annulation 42 2.1 Introduction 44 2.1.1 Introduction to Quaternary Protoberberines 44 2.1.2 Classical Methods for the Total Synthesis of 13-Methylpalmatine Natural Product 46 2.1.3 Intramolecular Alkenes Redox-neutral Cyclization Reactions 47 2.1.4 Intramolecular Alkynes through C–H Activation/Annulation Reactions 50 2.2 Objective 52 2.3 Results and Discussion 53 2.3.1 Optimization Studies 53 2.3.2 Scope of the Reaction 54 2.3.3 Results of the Aminoalkynes and α,β-Unsaturated Aldehydes 60 2.4 Mechanistic Discussion 62 2.4.1 Regioselectivity Confirmation of Product 3p 63 2.5 Gram-scale Reaction 64 2.6 Application to the Synthesis of unknown Protoberberine Alkaloids 64 2.7 Conclusion 66 2.8 Experimental Section 67 2.9 Spectroscopic Data 69 2.10 References 94 CHAPTER 3: Efficient Synthesis of Isoquinolones by Rhodium Catalyzed C-H Bond Activation 99 3.1 Introduction 100 3.1.1 Introduction to Isoquinolone or Isoquinolin-1(2H)-one (Isocarbostyril) 100 3.1.2 Synthesis of Isoquinolone by Transition Metal Catalyzed Cyclisation/Annulation 101 3.1.3 Transition Metal Catalyzed Synthesis of Isoquinolone by C-H Activation/Annulation 103 3.2 Objective 108 3.3 Results and Discussion 108 3.3.1 Optimization Study for Suitable Oxidant 108 3.3.2 Scope of the Reaction 110 3.4 Mechanistic Discussion 115 3.4.1 Mechanistic Evidence for the Synthesis of Key Intermediate 116 3.5 Conclusion 117 3.6 Experimental Section 118 3.7 Spectroscopic Data 118 3.8 References 127 CHAPTER 4: One-Pot Synthesis of Highly Substituted Polyheteroaromatics by Rh(III)-Catalyzed Multiple C–H Activation and Annulation 131 4.1 Introduction 132 4.1.1 Introduction to benzonapthyridine 132 4.1.2 Synthesis of Benzo[1,8]naphthyridine Tradional Methods 133 4.1.3 General Introduction of Transition Metal Catalyzed Multiple C-H Activation/Annulation 135 4.2 Objective 140 4.3 Results and Discussion 140 4.3.1 Optimization Studies 140 4.3.2 Scope of the Reaction 142 4.3.3 Scope of the Reaction with Aliphatic Alkynes 147 4.3.4 Scope of the Reaction with Nitriles, Amines and Alkynes 148 4.4 Mechanistic Discuission 152 4.4.1 Isolation of the Intermediates 153 4.4.2 Competition Experiments 155 4.5 UV-PL Studies for the Compounds of 3 157 4.6 Conclusion 159 4.7 Experimental Section 159 4.8 Spectroscopic Data 160 4.7 References 177 Crystal Structures, 1H and 13C NMR Spectra 183 LIST OF SCHEMES CHAPTER 1 Scheme 1.1: Retrosynthetic Disconnections of the Isoquinoline Core. 5 Scheme 1.2: Synthesis of Isoquinolines from Cyclopalldated Benzaldimines and Internal Alkynes. 7 Scheme 1.3: Jun Heterocycle Synthesis. 8 Scheme 1.4: Rhodium(III)-Mediated Isoquinoline Salt Formation by Jones. 8 Scheme 1.5: Synthesis of Isoquinoline with Rh(III)-Catalysed by Fagnou. 8 Scheme 1.6: Isoquinolines from Aryl ketone O-Acyloxime Derivatives and Internal Alkynes. 9 Scheme 1.7: Synthesis of Isoquinolines from Benzaldimines and Internal alkynes Annulation. 10 Scheme 1.8: Isoquinolines from o-Halobenzaldimines or Iminoalkynes annulation. 10 Scheme 1.9: Isoquinolines from Aryl ketone O-Acyloxime Derivatives and Internal alkynes. 10 Scheme 1.10: Retro Synthetic Route for Metal Catalysed Synthesis of Isoquinolinium Salts. 11 Scheme 1.11: Ortep Diagram of Compound 4a. 19 Scheme 1.12: Proposed Mechanistic Pathway for the formation of Isoquinolinium salt 4q 20 Scheme 1.13: Ortep Diagram of Rhodacycle I. 21 Scheme 1.14: Reaction of Rhodacycle (I) with Alkynes. 22 Scheme 1.15: Total Synthesis of Oxychelerythrine (7). 23 Scheme 1.16: The C-H Activation of a-β-Unsaturated Aldehydes, Amines and Alkynes. 24 CHAPTER 2 Scheme 2.1: Synthetic Methods of Protoberberine Derivatives 47 Scheme 2.2: Rh(III)-Catalyzed Enantioselective Intramolecular Hydroarylation of Alkenes via C–H Bond Activation. 48 Scheme 2.3: Rh(III)-Catalyzed Intramolecular Hydroarylation, Amidoarylation, and Heck-type Reaction. 48 Scheme 2.4: Chiral Rh(III)-Catalyzed Asymmetric Hydroarylations of 1,1- Disubstituted Alkenes. 49 Scheme 2.5: Rh(III)-Catalyzed Intramolecular Redox-neutral Cyclization of Alkenes via C–H Activation. 50 Scheme 2.6: Rhodium Catalyzed Redox-neutral Annulation of Aromatic amides with Alkynes. 50 Scheme 2.7: Rhodium(III)-Catalyzed Intramolecular Annulations involving Amide-directed C–H Activations. 50 Scheme 2.8: Synthesis of the Homoprotoberberine Framework by Glorious. 51 Scheme 2.9: Synthesis of Various Nitrogen Containing Salts by Cheng Groups. 52 Scheme 2.10: Retro Synthetic route for the Synthesis of Protobereberine Salt 53 Scheme 2.11: Proposed Mechanistic Pathway for the formation of Protoberberine Salt. 63 Scheme 2.12: Ortep Diagram of 3p. 64 Scheme 2.13: Scale-up Reaction. 64 Scheme 2.14: Ortep Diagram of 8 65 Scheme 2.15: Synthesis of Quaternary Protoberberine Alkaloids (6-10).. 66 CHAPTER 3 Scheme 3.1: Main Strategies for the Synthesis of Isoquinolone core by Metal Catalyzed Cascade Processes 102 Scheme 3.2: Strategies for Heterocycle formation through Cross-Coupling/ Cyclization 103 Scheme 3.3: Rh(III)-Catalyzed Redox-Neutral Annulation of Aromatic-amides with Alkynes 104 Scheme 3.4: Rhodium-Catalyzed Oxidative Cycloaddition of Aromatic-amides with alkynes 104 Scheme 3.5: Ru-Catalyzed Oxidative Cycloaddition of Aromatic-amides with alkynes 105 Scheme 3.6: Pd-Catalyzed Oxidative Cycloaddition of Aromatic-amides with Alkynes 105 Scheme 3.7: Ni-Catalyzed Oxidative Cycloaddition of Aromatic-amides with Alkynes 106 Scheme 3.8: Rh-Catalyzed Double Directing group Strategy for the Synthesis of Isoquinolone 106 Scheme 3.9: Rh-Catalyzed Oxidative Cycloaddition of Aromatic-amides with Alkyne MIDA (N-methyliminodiacetic acid) boronates 107 Scheme 3.10: Organo-Catalyzed Oxidative Cycloaddition of Aromatic-amides with Alkynes 107 Scheme 3.11: Retro Synthetic Route for the Synthesis of Isoquinolone with Rh(III)-Catalyzed one-pot Reaction 108 Scheme 3.12: Proposed Mechanistic Pathway for the formation of Isoquinolone (4a) 116 Scheme 3.13: Isolation and Evidence for the Formation of Isoquinolone (4a) 117 CHAPTER 4 Scheme 4.1: Cascade Cyclization of Nitriles to Fused, Aromatic Molecules. 134 Scheme 4.2: Classical Methods for the Synthesis of Benzo[1,8]naphthyridine Derivatives. 135 Scheme 4.3: Rh(III)-Catalyzed Multiple C-H/N-H Activation by Miura et al. 136 Scheme 4.4: Rh(III) Catalyzed Dual C-H/N-H Activation by Xingwei Li et al 137 Scheme 4.5: Rh(III) Catalyzed Multiple C-H/O-H Activation by Wang et al. 138 Scheme 4.6: Rh(III) Catalyzed Dual C-H/N-H Activation by Cheng et al 139 Scheme 4.7: Rh(III) Catalyzed Dual C-H/N-H activation by Cheng et al. 139 Scheme 4.8: Pd(II) Catalyzed Dual C-H/N-H Activation by Wang et al 140 Scheme 4.9: Retro-synthetic Route for the Synthesis of Polyhetroaromatics with Rh(III)-Catalysed one-pot Reaction. 140 Scheme 4.10: Ortep Diagram of Compound 5e. 151 Scheme 4.11: Proposed Mechanism for the formation of Benzoisoquinolinonaphthyridines Derivatives. 153 Scheme 4.12: Isolation of Intermediate 4 and its Reaction with Alkynes. 154 Scheme 4.13: Isolation of Intermediate 4b and Competitive Experiments between Nitrile and Aldehyde with Amine and Alkyne. 155 Scheme 4.14: Ortep Diagram of Compounds 4b and 8. 156 Scheme 4.15: Absorption and Fluorescence Spectra of 3. 157 Scheme 4.16: The UV-Vis Absorption and Emission Spectra of Compounds 3t and 5d in toluene. 158 LIST OF TABLES CHAPTER 1 Table 1.1: Silver Salt and Solvent Optimization Studies for the Rh(III)-Catalyzed Isoquinolinium Salts from Benzaldehyde, Methyl Amine with Diphenylacetylene 12 Table 1.2: Oxidant Optimization Studies for the Rh(III)-Catalyzed Isoquinolinium Salts from Aryl Aldehyde, Methyl Amine with Alkynes 13 Table 1.3: Results of Rhodium-Catalyzed C-H Activation and Annulation of Benzaldehydes, Methyl amine and Alkynes 15 CHAPTER 2 Table 2.1: Optimiztion Studies for the Rh(III)-Catalyzed formation of Protoberbernium salt 3a from 1a and Aminoalkyne 2a. 44 Table 2.2. Results of Rh-Catalyzed C–H Activation and Annulation of Benzaldehydes, with Aminoalkynes 57 Table 2.3: Results of Rhodium-Catalyzed C-H Activation and Annulation of α,β-Unsaturated Aldehydes and Amino-alkynes 63 CHAPTER 3 Table 3.1: Oxidant Optimization Studies for the Rh(III)-Catalyzed C-H Activation 109 Table 3.2: Results of Rhodium-Catalyzed C-H Activation and Annulation of Benzaldehydes, Methyl amine and Alkynes 111 CHAPTER 4 Table 4.1: Optimization Studies for the Rh- Catalyzed C-H Activation of N-Hydroxybenzamidines with Alkynes 141 Table 4.2: Results of the Reaction of N-Hydroxybenzamidines 1a-m with Alkynes 2a-f 143 Table 4.3: Results of the Reaction of Oximes 1b with Alkynes 2g-i 148 Table 4.4: Results of Rhodium-Catalyzed C-H Activation and Annulation of Benzonitriles, Methylamine and Alkynes 149 Table 4.5 Absorption and Fluorescence Spectra of 3i, 3j, 3l and 3r 158 LIST OF FIGURES CHAPTER 1 Figure 1.1: Proposed Mechanism for C(sp2)–H bond Functionalization 4 Figure 1.2: Natural Products Containing Isoquinoline Motif 6 CHAPTER 2 Figure 2.1: Protoberberine Core Alkaloids . 44 Figure 2.2. Natural products Containing Quaternary Protoberberines 46 CHAPTER 3 Figure 3.1: Natural Products Containing Isoquinoline-1(2H)-one Core Structures 78 CHAPTER 4 Table 4.1: Natural Products Containing Benzonapthridine Core Structures 133

    Chapter-1
    1.8. References:
    [1] K. M. Engle, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 14137.
    [2] a) B. Sezen, D. Sames, J. Am. Chem. Soc. 2003, 125, 5274; b) B. Glover, K. A. Harvey, B. Liu, M. J. Sharp, M. F. Tymoschenko, Org. Lett. 2003, 5, 301; c) M. Toyota, A. Ilangovan, R. Okamoto, T. Masaki, M. Arakawa, M. Ihara, Org. Lett. 2002, 4, 4293; d) C. C. Hughes, D. Trauner, Angew. Chem. Int. Ed. 2002, 41, 1569; e) E. J. Henessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084.
    [3] D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624.
    [4] A. J. Canty, G. van Koten, Acc. Chem. Res. 1995, 28, 406.
    [5] A. D. Ryabov, I. K. Sakodinskaya, A. K. Yatsimirsky, J. Chem. Soc., Dalton Trans. 1985, 2629.
    [6] a) Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, Dalton Trans. 2009, 5820; b) D. Lapointe, K. Fagnou, Chem. Lett. 2011, 111, 1315.
    [7] a) B. D. Krane, M. O. Fagbule, M. Shamma, J. Nat. Prod. 1984, 47, 1; b) B. Gerhard, T. Gulder, U. Hentschel, F. Meyer, H. Moll, J. Morschhauser, D. V. A. Ponte-Sucre, W. Ziebuhr; A. Stich, R. Brun, W. E. G. Muller, V. Mudogu, Int. Patent, WO 2008/037482A1, 2008; c) M. S. Cushman, A. S. Ioanoviciu, Y. G. Pommier, WO 2005/089294A2, 2005; d) N-laurylisoquinolinium bromide, hexadecamethylenediisoquinolium dichloride, and quinapril are popular drug molecules.
    [8] a) R. M. Scarborough, K. A. Kane-Maguire, C. K. Marlowe, M. S. Smyth, X. Zhang, US Patent, US 2005/0113399A1, 2005; b) N. I. Alun, P. K. Mark, B. P Allen, Int. Patent, WO 2006/067444A1, 2006; c) M. Barrie, W. Paul, Int. Patent, WO 2007/149031A1, 2007; d) L. J. Adams, Int. Patent, WO 2004/108682A2, 2004.
    [9] The Chemistry of Hetrocyclic Compounds: Isoquinolines; G. M. Coppola, H. F. Schuster, Eds. John Wiley & Sons: New York, 1981; Vol. 38, Part 3.
    [10] a) X. Xu, S. Guo, Q. Dang, J. Chen, X. Bai, J. Comb. Chem. 2007, 9, 773; b) T. Ishikawa, K. Shimooka, T. Narioka, S. Noguchi, T. Saito, A. Ishikawa, E. Yamazaki, T. Harayama, H. Seki, K. Yamaguchi, J. Org. Chem. 2000, 65, 9143; c) A. Bischler, B. Napieralski, Ber. Dtsch. Chem. Ges. 1893, 26, 1903; For Pomeranz-Fritsch examples, see: d) E. V. Brown, J. Org. Chem. 1977, 42, 3208; e) W. Herz, S. Tocker, J. Am. Chem. Soc. 1955, 77, 6355; f) P. Fritsch, Ber. Dtsch. Chem. Ges. 1893, 26, 419; g) C. Pomeranz, Monatsh. Chem. 1893, 14, 116; For Pictet-Spengler examples, see: h) S. W. Youn, J. Org. Chem. 2006, 71, 2521; i) A. Pictet, T. Spengler, Chem. Ber. 1911, 44, 2030.
    [11] a) G. Wu, A. L. Rheingold, S. J. Geib, R. F. Heck, Organometallics, 1987, 6, 1941; b) G. Wu, S. J. Geib, A. L. Rheingold, R. F. Heck, J. Org. Chem. 1988, 53, 3238.
    [12] S.-G. Lim, J.-H. Lee, C. W. Moon, C. J.-B Hong, C.-H. Jun, Org. Lett. 2003, 5, 2759.
    [13] L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414.
    [14] N. Guimond, K. Fagnou, J. Am.Chem. Soc. 2009, 131, 12050.
    [15] a) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688; b) P. C. Too, S. H. Chua, S. H. Wong, S. Chiba. J. Org. Chem. 2011, 76, 6159.
    [16] a) J. F. Berry, F. A. Cotton, P. Lei, T. B. Lu, C. A. Murillo, Inorg. Chem. 2003, 42, 3534; b) S. Gaillard, M. K. Elmkaddem, C. Fischmeister, C. M. Thomas, J. L. Renaud, Tetrahedron Lett. 2008, 49, 3471; c) H. Y. Gong, X. H. Zhang, D. X. Wang, H. W. Ma, Q. Y. Zheng, M. X. Wang, Chem. Eur. J. 2006, 12, 9262; d) J. M. Hancock, S. A. Jenekhe, Macromolecules 2008, 41, 6864; e) H. Hasan, U. K. Tan, Y. S. Lin, C. C. Lee, G. H. Lee, T. W. Lin, S. M. Peng, Inorg. Chim. Acta 2003, 351, 369; f) P. D. Vellis, J. A. Mikroyannidis, C. N. Lo, C. S. Hsu, J. Polym. Sci., Polym. Chem. 2008, 46, 7702; g) E. X. Zhang, D. X. Wang, Q. Y. Zheng, M. X. Wang, Org. Lett. 2008, 10, 2565.
    [17] a) Q. Huang, J. A. Hunter, R. C. Larock, Org. Lett. 2001, 3, 2973; b) K. R. Roesch, H. Zhang, R. C. Larock, J. Org. Chem. 2001, 66, 8042.
    [18] a) R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179; b) R. P. Korivi, W.-J. Wu, C.-H. Cheng, Chem. Eur. J. 2009, 15, 10727; c) R. P. Korivi, W.-J. Wu, C.-H. Cheng, Chem. Eur. J. 2010, 16, 282.
    [19] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764.
    [20] a) C.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; d) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; f) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212
    [21] a) D. Gnecco, C. Marazano, R. G. Enriquez, J. L. Teran, M. R. Sanchez. S. A. Galindo, Tetrahedron: Asymmetry 1998, 9, 2027; b) S. D. Burke, R. L. Danheiser, Oxidizing and Reducing Agents, Wiley, New York, 2000, p. 154.
    [22] a) M. Hanaoka, T. Motonishi, C. Mukai. J. Chem. Soc., Perkin Trans. 1, 1986, 2253; b) T. Harayama, T. Akiyama, K. Kawano. Chem. Pharm. Bull. 1996, 44(8) 1634; c) T. N. Le, W.-J. Cho, Chem. Pharm. Bull. 2005, 53(1) 118.
    [23] a) T. K. Hoffmann, K. Leenen, D. Hafner, V. Balz, C. Gerharz, A. Grund, H. Ballo, U. Hauser, H. Bier, Anti-Cancer Drugs, 2002, 13, 93; b) H. Lou, M. Ookhtens, A. Stolz, N. Kaplowitz, Am. J. Physiol. Gastrointest. Liver Psysiol., 2003, 285, G1335; c) S.-L. Chan, M. C. Lee, K. O. Tan, L.-K. Yang, A. S. Y. Lee, H. Flotow, N. Y. Fu, M. S. Butler, D. D. Soejarto, A. D. Buss, V. C. Yu, J. Biol.Chem., 2003, 278, 20453..
    [24] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.

    Chapter-2
    References:
    [1] For berberine synthesis reviews, see; a) J. Stcckigt, A.-P, Antonchick, F. Wu, H. Waldmann, Angew. Chem. 2011, 123, 8692-8719; Angew. Chem. Int. Ed. 2011, 50, 8538-8564; b) D.-Z. Wu, J.-Y, Yuan, H.-L. Shi, Z.-B Hu, Br. J. Pharmacol. 2008, 153, 1203-1213; c) T. Hashimoto, Y. Yamada, Annu. Rev., Plant. Physiol. Mol. Biol. 1994, 45, 257-285.
    [2] a) L. Grycova, J. Dostal, R. Marek, Phytochemistry 2007, 68, 150-175; b) K. Iwasa, M. Moriyasu, T. Yamori, T. Turuo, D.-U. Lee, W. Wiegrebe, J. Nat. Prod. 2001, 64, 896-898; c) A. Singh, S. Duggal, N. Kaur, J. Singh, J. Nat. Prod. 2010, 3, 64; d) T.-M. Hung, P.-T. Thuong, N.-T. Nhan, N.-T. Thanh Mai, T.-L. Quan, J.-S. Choi, M.-H. Woo, B.-S. Min, K.-W. Bae, Nat. Prod. Sci. 2011, 17, 108-112.
    [3] Synthesis and bio-activity of protoberberine alkaloids see: a) M. Hanaoka, S. Yoshida, C. Mukai, J. Chem. Soc., Chem. Commun. 1985, 1257-1258; b) X.-Y. Cheng, Y. Shi, S.-L. Zhen, H. Sun, W. Jin, J. Chromat. Sci. 2010, 48, 441-444; c) Z. Iparissiderso, B. Fichtnerja, N. Plawskbia, L. Nalliah, D. B. Maclean, Can. J. Chem. 1980, 58, 2770-2779; d) Y.-H. Li, P. Yang, W.-J. Kong, Y.-X. Wang, C.-Q. Hu, Z.-Y. Zuo, Y.-M. Wang, H. Gao, L.-M. Gao, Y.-C. Feng, N.-N. Du, Y. Liu, D.-Q. Song, J.-D. Jiang, J. Med. Chem. 2009, 52, 492-501; e) D.-U. Lee, Y.-J. Kang, M.-K. Park, Y.-S. Lee, H.-G. Seo, T.-S. Kim, C.-H. Kim, K.-C. Chang, Life. Sci. 2003, 73, 1401-1412; f) L. Chen, L. Feng, Y. Li, G. Wu, US Patent, US 2010/0286396A1, 2010; g) Y.-X. Liu, C.-L. Xiao, Y.-X. Wang, Y.-H. Li, Y.-H. Yang, Y.-B. Li, C.-W. Bi, L.-M. Gao, J.-D. Jiang, D.-Q. Song, Eur. J. Med. Chem. 2012, 52, 151-158; h) J.-B. Bremner, S. Samosorn, Aus. J. Chem. 2003, 56, 871-873; l) G.-E. Lee, H.-S. Lee, S.-D. Lee, J.-H. Kim, W.-K. Kim, Y.-C. Kim, Bioorg. Med. Chem. Lett. 2009, 19, 954-958; m) 1) X. Bian, L. He, G. Yang, Bioorg. Med. Chem. Lett. 2006, 16, 1380-1383.
    [4] F. Y. Tang, A. G. Nie, J. Clin. Exp.Med. 2006, 5, 185.
    [5] a) A. P. Sagare, Y. L. Lee, T. C. Lin, C. C. Chen, Plant Sci, 2000, 160, 139; b) L. Z. Zhang, J. Guiyang. Med. Coll. 2006, 31, 280.
    [6] a) Y. Q. Qing, Q. Z. Yang, Med. J. 1978, 10, 450; b) B. R. Jang, Q. X. Wu, H. L. Shi, Acta pharmaceutica Sinica 1982, 17, 61.
    [7] X.-Y. Cheng, Y. Shi, S.-L. Zhen, H. Sun, W. Jin, J. Chromat. Sci. 2010, 48, 441.
    [8] a) C.-H. Jun, C. W. Moon, D.-Y. Lee. Chem. Eur. J. 2002, 8, 2422-2428; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 871-877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; d) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222; e) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu. Angew. Chem. 2009, 121, 5196-5217; Angew. Chem. Int. Ed. 2009, 48, 5094-5115; f) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010 327, 315-319; g) T. W. Lyons, M. S. Sanford. Chem. Rev. 2010, 110, 1147-1169; h) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; i) J. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170-1214; j) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45,788-802; k) M. Mewald, J. A. Schiffner, M. Oestreich, Angew. Chem. 2012, 124, 1797-1799; Angew. Chem. Int. Ed. 2012, 51, 1763-1765.
    [9] a) M. V Pham, N. Cramer, Angew. Chem. 2014, 126, 3552-3555; Angew. Chem. Int. Ed. 2014, 53, 3484-3487.; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; c) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651-3678; d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev.,2012, 112, 5879-5918; e) L. Ackermann, Acc. Chem. Res., 2014, 47, 281-295; f) F.W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31-41.
    [10] R. K. Thalji, K. A. Ahrendt, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2001, 123, 9692.
    [11] T. A. Davis, T. K. Hyster, T. Rovis, Angew. Chem. 2013, 125, 14431; Angew. Chem. Int. Ed. 2013, 52, 14181.
    [12] B. Ye, P. A. Donets, N. Cramer, Angew. Chem. 2014, 126, 517; Angew. Chem. Int. Ed. 2014, 53, 507.
    [13] Z. Shi, M. Boultadakis-Arapinis, D. C. Koester, F. Glorius, Chem. Commun. 2014, 50, 2650.
    [14] X. Xianxiu, Y. Liu, C.-M. Park, Angew. Chem. 2012, 124, 9506; Angew. Chem. Int. Ed. 2012, 51, 9372.
    [15] N. Quinones, A. Seoane, R. Garcıa-Fandino, J. L. Mascarenas, M. Gulıas, Chem. Sci. 2013, 4, 2874.
    [16] Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. 2013, 125, 5503; Angew. Chem. Int. Ed. 2013, 52, 5393.
    [17] a) K. Parthasarathy, N. Senthilkumar, J. Jayakumar, C.-H. Cheng, Org. Lett. 2012, 14, 3481; b) C.-Z, Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang, C.-H. Cheng, Chem. Eur. J. 2013, 19, 14181; c) C. -Z, Luo, P. Gandeepan, C.-H. Cheng, Chem. Commun. 2013, 49, 8528; d) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. 2012, 124, 201; Angew. Chem. Int. Ed. 2012, 51, 197; e) d) K. Muralirajan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 6198; f) N. Senthilkumar, P. Gandeepan, J. Jayakumar, C.-H. Cheng, Chem. Commun. 2014, 50, 3106.
    [18] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764-770.
    [19] H-J. Frohn, A. Wenda, U. Florke. Z. Anorg. Allg. Chem. 2008, 634, 764.
    [20] a) C.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; b) Y. J. Park, C.-H. Jun, Bull. Korean. Chem. Soc. 2005, 26, 877; c) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; d) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; e) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212.
    [21] a) D. Gnecco, C. Marazano, R. G. Enriquez, J. L. Teran, M. R. Sanchez. S. A. Galindo, Tetrahedron: Asymmetry 1998, 9, 2027; b) S. D. Burke, R. L. Danheiser, Oxidizing and Reducing Agents, Wiley, New York, 2000, p. 154.
    [22] a) M. Hanaoka, T. Motonishi, C. Mukai. J. Chem. Soc., Perkin Trans. 1, 1986, 2253; b) T. Harayama, T. Akiyama, K. Kawano. Chem. Pharm. Bull. 1996, 44(8) 1634; c) T. N. Le, W.-J. Cho, Chem. Pharm. Bull. 2005, 53(1) 118.
    [23] a) T. K. Hoffmann, K. Leenen, D. Hafner, V. Balz, C. Gerharz, A. Grund, H. Ballo, U. Hauser, H. Bier, Anti-Cancer Drugs, 2002, 13, 93; b) H. Lou, M. Ookhtens, A. Stolz, N. Kaplowitz, Am. J. Physiol. Gastrointest. Liver Psysiol., 2003, 285, G1335; c) S.-L. Chan, M. C. Lee, K. O. Tan, L.-K. Yang, A. S. Y. Lee, H. Flotow, N. Y. Fu, M. S. Butler, D. D. Soejarto, A. D. Buss, V. C. Yu, J. Biol.Chem., 2003, 278, 20453..
    [24] D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.

    Chapter-3
    References:
    [1] B. D. Krane, M. Shamma, J. Nat. Prod. 1982, 45, 377.
    [2] V. A. Glushkov, Y. V. Shklyaev, Chem. Heterocycl. Compd. 2001, 37, 663.
    [3] G. R. Pettit, Y. H. Meng, D. L. Herald, K. A. N. Graham, R. K. Pettit, D. L. Doubek, J. Nat. Prod. 2003, 66, 1065.
    [4] a) J. H. Rigby, U. S. M. Maharoof, M. E. Mateo, J. Am. Chem. Soc. 2000, 122, 6624; b) T. Hudlicky, U. Rinner, D. Gonzalez, H. Akgun, S. Schilling, P. Siengalewicz, T. A. Martinot, G. R. Pettit, J. Org. Chem. 2002, 67, 8726.
    [5] a) F. Coelho, D. Veronese, E. C. S. Lopes, R. C. Rossi, Tetrahedron Lett. 2003, 44, 5731; b) H. Heaney, K. F. Shuhaibar, Synlett 1995, 47.
    [6] a) A. Saeed, Z. Ashraf, Pharm. Chem. J. 2008, 42, 277; b) J. F. Guastavino, S. M. Barolo, R. A. Rossi, Eur. J. Org. Chem. 2006, 17, 3898; c) K. B. Simonsen, J. Kehler, K. Juhl, N. Khanzhin, S. M. Nielsen, Patent WO2008131779A1; d) Y. H. Wong, M. K. C. Ho, Y. Q. Hu, D. C. New, X. X. He, H. H. Pang, Patent WO2008092292A1; e) O. Plettenburg, K. Lorenz, J. Goerlitzer, M. Loehn, Patent WO2008077555A2; f) Y. Asano, S. Kitamura, T. Ohra, F. Itoh, M. Kajino, T. Tamura, M. Kaneko, S. Ikeda, H. Igata, T. Kawamoto, S. Sogabe, S. Matsumoto, T. Tanaka, M. Yamaguchi, H. Kimura, S. Fukumoto, Bioorg. Med. Chem. 2008, 16, 4699.
    [7] a) T. Matsui, T. Sugiura, H. Nakui, S. Iguch, S. Shigeoka, H. Tukedu, T. Odagaki, Y. Ushio, K. Ohmoto, M; Iwamani, S. Yamazaki, T. Arai, M. Kawamura, J. Med. Chem. 1992, 35, 3307; b) S. W. Li, M. G. Nair, D. M. Edwards, R. L. Kisluick, Y. Gaument, I. K. Dev, D. S. Duch, J. Humphreys, G. K. Smith, R. Ferone, J. Med. Chem. 1991, 34, 2746.
    [8] G. S. Poindexter, J. Org. Chem. 1982, 47, 3787.
    [9] T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 1432.
    [10] H. Gao, J. Zhang, Adv. Synth. Catal. 2009, 351, 85.
    [11] V. R. Batchu, D. K. Barange, D. Kumar, B. R. Sreekanth, K. Vyas, E. A. Reddy, M. Pal, Chem. Commun. 2007, 19, 1966.
    [12] C.-C. Liu, K. Parthasarathy , C.-H. Cheng, Org. Lett. 2010, 12, 3518.
    [13] F. Wang,H. Liu, H. Fu, Y. Jiang, Y. Zhao, Org. Lett. 2009, 11, 2469.
    [14] Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058.
    [15] T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085.
    [16] Z. Zheng, H. Alper, Org. Lett. 2008, 10, 4903.
    [17] A. C. Tadd, A. Matsuno, M. R. Fielding, M. C. Willis, Org. Lett. 2009, 11, 583; b) A. Dieudonne-Vatran, M. Azoulay, J. C. Florent, Org. Biomol. Chem. 2012, 10, 2683.
    [18] N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449. b) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908.
    [19] T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565.
    [20] L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. 2011, 123, 6503; Angew. Chem. Int. Ed. 2011, 50, 6379.
    [21] H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236.
    [22] H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952.
    [23] J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-Li. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492.
    [24] H. Wang, C. Grohmann, C. Nimphius, F. Glorius, J. Am. Chem. Soc. 2012, 134, 19592.
    [25] S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2014.
    [26] Comprehensive organic functional group transformations, 1st ed.; Katritzky, A. R., Cohn, O. M., Eds.; Rees, C. W.; Pergamon: Chichester, England, 1991; Vol. 2, p 328; Vol. 3, p 419. (4) (a) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941. (b) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. J.Org. Chem. 1988, 53, 3238.
    [27] a) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941. b) Wu, G.; Rhiengold, A. L.; Geib, S. J.; Heck, R. F. J.Org. Chem. 1988, 53, 3238. c) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 2001, 66, 8042. d) Dai, G.; Larock, R. C. Org. Lett. 2002, 4, 193 and references therein e) Dai, G.; Larock, R. C. 2003, 68, 920. f) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553.
    [28] D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.

    Chapter-4
    References:
    [1] For recent examples of biological activities in benzonaphthyridine series, see: (a) S. Aoki, D. Kong, H. Suna, Y. Sowa, T. Sakai, A. Setiawan, M. Kobayashi, Biochem. Biophys. Res. Commun. 2006, 342, 101; b) Z. Ma, Z. Xiang, T. Luo, K. Lu, Z. Xu, J. Chen, Z. Yang, J. Comb. Chem. 2006, 8, 696; c) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792; d) A. Hinschberger, S. Butt, V. Lelong, M. Boulouard, A. Dumuis, F. Dauphin, R. Bureau, B. Pfeiffer, P. Renard, S. Rault, J. Med. Chem. 2003, 46, 138.
    [2] For recent examples in phenanthridine series, see: a) A. D. C. Parenty, L. V. Smith, K. M. Guthrie, D. Long, J. Plumb, R. Brown, L. Cronin, J. Med. Chem. 2005, 48, 4504; b) D. Ferraris, R. P. Ficco, T. Pahutski, S. Lautar, S. Huang, J. Zhang, V. Kalish, Bioorg. Med. Chem. Lett. 2003, 13, 2513.
    [3] Y. H. Hsiang, M. Lihou, L. Liu, Arrest or replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989, 49, 5077; b) Y. Pommier, Chem. Biol. 2013, 8, 82; c) A. L. Ruchelman, P. J. Houghton, N. Zhou, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 2005, 48, 792.
    [4] M. Jin, W. Zhao, Y. Zhang, M. Kobayashi, H. Duan, D. Kong, Int. J. Mol. Sci. 2011, 12, 7352.
    [5] C. Bailly, Chem. Rev. 2012, 112, 3611.
    [6] J. Deguchi, T. Shoji, A. E. Nugroho, Y. Hirasawa, T. Hosoya, O. Shirota, K. Awang, A. H. A. Hadi, H. Morita, J. Nat. Prod. 2010, 73, 1727.
    [7] F. Guillier, F. Nivoliers, A. Godard, F. Marsais, G. Queguiner, M. A. Siddiqui, V. Snieckus, J. Org. Chem. 1996, 60, 292.
    [8] P. L. Ferrarinia, C. Moria, M. Badawneh, V. Calderone, R. Greco, C. Manera, A. Martinelli, P. Nieri, G. Saccomanni, Eur. J. Med. Chem. 2000, 35, 815.
    [9] K. Mogilaiah, D. S. Chowdary, R. B. Rao, Ind. J. Chem. 2001, 40B, 43.
    [10] G. Roma, M. D. Braccio, G. Grossi, F. Mattioli, M. Ghia, Eur. J. Med. Chem. 2000, 35, 1021.
    [11] T.-C. Ko, M.-J. Hour, J.-C. Lien, C.-M. Teng, K.-H. Lee, S.-C. Kuoa, L.-J. Huang, Bioorg. Med. Chem. Lett. 2001, 11, 279.
    [12] a) A. S. Noravyan, E. G. S. ParonikyanVartanyan, A. Khim-Farm. Zh. 1985, 19, 790; b) V. P. Litvinov, S. V. Roman, V. D. Dyachenko, Usp. Khim. 2000, 69, 218. [Engl.transl.Russ.Chem.Rev. 2000, 69, 201].
    [13] a) L. Chrzastek, W. Sliwa, Aust. J. Chem. 1994, 47, 2129; b) B. Barbara, Z. Teresa, ARKIVOC 2001, 6, 77.
    [14] Selected reviews: a) J. E. Anthony, Angew. Chem. 2008, 120, 460; Angew. Chem. Int. Ed. 2008, 47, 452; b) M. D. Watson, A. FethtenkJtter, K. MLllen, Chem. Rev. 2001, 101, 1267; c) U. Mitschke, P. B. Muerle, J. Mater. Chem. 2000, 10, 1471; d) R. G. Harvey, Polycyclic aromatic hydrocarbons, Wiley-VCH, Weinheim, 1996.
    [15] a) T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, Appl. Phys. Lett. 2006, 88, 093514; b) T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, J. Appl. Phys. 2005, 98, 074506; c) D. Qin, Y. Tao, J. Appl. Phys. 2005, 97, 044505; d) D. Qin, Y. Tao, Appl. Phys. Lett. 2005, 86, 113507; e) Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129, 1520. See also a review: f) F. Cicoira, C. Santato, Adv. Funct. Mater. 2007, 17, 3421.
    [16] a) J. F. Berry, F. A. Cotton, P. Lei, T. B. Lu, C. A. Murillo, Inorg. Chem. 2003, 42, 3534; b) S. Gaillard, M. K. Elmkaddem, C. Fischmeister, C. M. Thomas, J. L. Renaud, Tetrahedron Lett. 2008, 49, 3471; c) H. Y. Gong, X. H. Zhang, D. X. Wang, H. W. Ma, Q. Y. Zheng, M. X. Wang, Chem. Eur. J. 2006, 12, 9262; d) J. M. Hancock, S. A. Jenekhe, Macromolecules 2008, 41, 6864; e) H. Hasan, U. K. Tan, Y. S. Lin, C. C. Lee, G. H. Lee, T. W. Lin, S. M. Peng, Inorg. Chim. Acta 2003, 351, 369; f) P. D. Vellis, J. A. Mikroyannidis, C. N. Lo, C. S. Hsu, J. Polym. Sci., Polym. Chem. 2008, 46, 7702; g) E. X. Zhang, D. X. Wang, Q. Y. Zheng, M. X. Wang, Org. Lett. 2008, 10, 2565.
    [17] a) U. H. F. Bunz, Chem.Eur. J. 2009, 15, 6780; b) F. Stockner, R. Beckert, D. Gleich, E. Birckner, W. Gunther, H. Gorls, G. Vaughan, Eur. J. Org. Chem. 2007, 8, 1237; c) M. Matschke, R. Beckert, E. U. Wurthwein, H. Gorls, Synlett 2008, 17, 2633; d) Q. Tang, J. Liu, H. Chan, S. Q. Miao, Chem. Eur. J. 2009, 15, 3965.
    [18] a) T. J. Murray, S. C. Zimmerman, J. Am. Chem. Soc. 1992, 114, 4010; b) S. Djurdjevic, D. A. Leigh, H. McNab, S. Parsons, G. Teobaldi, F. Zerbetto, J. Am. Chem. Soc. 2007, 129, 476; c) B. A. Blight, A.; Camara-Campos, S. Djurdjevic, M. Kaller, D. A. Leigh, F. M. McMillan, H. McNab, A. M. J. Slawin, J. Am. Chem. Soc. 2009, 131, 14116.
    [19] a) W. J. Behof, D. Wang, W. Niu, C. B. Gorman, Org. Lett. 2010, 12, 2146; b) S. J. Collier, P. Langer, Sci. Synth. 2004, 19, 403.
    [20] a) P. G. Dormer, K. K. Eng, R. N. Farr, G. R. Humphrey, J. C. McWilliams, P. J. Reider, J. W. Sager, R. P. Volante, J. Org. Chem. 2003, 68, 467; b) T. R. R. Naik, H. S. B. Naik, H. R. P. Naik, P. J. Bindu, Research Letters in Organic Chemistry 2008, Article ID 594826, pp 4 pages, doi:10.1155/2008/594826; c) T. R. R. Naik, H. S. B. Naik, M. Raghavedra, S. G. K. Naik, Arkivoc, 2006, 15, 84; d) M. Manoj, K. J. R. Prasad, Arkivoc, 2011, 9, 289.
    [21] Selected reviews: a) J. E. Anthony, Angew. Chem. 2008, 120, 460; Angew. Chem. Int. Ed. 2008, 47, 452; b) M. D. Watson, A. FethtenkJtter, K. MLllen, Chem. Rev. 2001, 101, 1267; c) U. Mitschke, P. B. Muerle, J. Mater. Chem. 2000, 10, 1471; d) R. G. Harvey, Polycyclic aromatic hydrocarbons, Wiley-VCH, Weinheim, 1996.
    [22] a) T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, Appl. Phys. Lett. 2006, 88, 093514; b) T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, J. Appl. Phys. 2005, 98, 074506; c) D. Qin, Y. Tao, J. Appl. Phys. 2005, 97, 044505; d) D. Qin, Y. Tao, Appl. Phys. Lett. 2005, 86, 113507; e) Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129, 1520. See also a review: f) F. Cicoira, C. Santato, Adv. Funct. Mater. 2007, 17, 3421.
    [23] J. N. Moorthy, P. Natarajan, P. Venkatakrishnan, D.-F. Huang, T. J. Chow, Org. Lett. 2007, 9, 5215.
    [24] a) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem. 2008, 120, 4083; Angew. Chem. Int. Ed. 2008, 47, 4019; b) T. Fukutani, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 2867. d) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744.
    [25] a) G. Song, D. Chen, C. Pan, R. H. Crabtree, X. Li, J. Org. Chem. 2010, 75, 7487; b) G. Song, X. Gong, X. Li, J. Org. Chem. 2011, 76, 7583.
    [26] X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song, B. Wang. J. Am. Chem. Soc. 2012, 134, 16163.
    [27] J. Li, M. John, L. Ackermann, Chem. Eur. J. 2014, 20, 5403.
    [28] J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. 2012, 124, 49; Angew. Chem. Int. Ed. 2012, 51, 12343.
    [29] L. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. 2013, 125, 1812; Angew. Chem. Int. Ed. 2013, 52, 1768.
    [30] a) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740; c) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651. d) F.W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31; e) L. Ackermann, Acc. Chem. Res., 2014, 47, 281; f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev.,2012, 112, 5879; f) J. Li, M. John, L. Ackermann, Chem. Eur. J. 2014, 20, 5403.
    [31] Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE