研究生: |
周芳群 Chou, Fang-Chun |
---|---|
論文名稱: |
以氣溶膠製程控制生成複合式奈米粒子作為奈米燃劑與觸媒之應用 Controlled Gas-phase Synthesis of Hybrid Nanoparticles for Nano-energetics and Nanocatalysis |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
呂世源
Lu, Shih-Yuan 何榮銘 Ho, Rong-Ming 汪上曉 Wong, Shan-Hill |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 觸媒 、甲烷燃燒 、積碳 、穩定性測試 、複合式奈米粒子 |
外文關鍵詞: | catalyst, methane combustion, coking, stability test, Hybrid nanoparticles |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究工作目的是建立氣相二次鍛燒奈米粒子合成系統,同時以製備的奈米粒子進行觸媒催化反應測試。藉由改變前驅物溶液的濃度及組成,我們可以改變製備的產物組成、粒子大小及形態,更進一步能夠透過氫氣還原及改變二次鍛燒系統的溫度來控制產物的氧化態。分析技術上以固定床觸媒催化活性測試系統來分析奈米粒子對甲烷燃燒的活性。而在二氧化碳重組反應中我們藉由連續紅外線偵測系統檢測反應氣體濃度及觀察觸媒床溫度,進而了解觸媒催化與反應吸、放熱情形。本研究方向會透過分析系統上的檢測,來探討奈米粒子的催化機制。
在第一部分實驗結果甲烷燃燒反應中,我們利用氣相方式來製備不同化學組成的單成分CuxO-NP與均質的複合式CuCeOx-NP之奈米觸媒,並探討單成分氧化銅奈米粒子與氧化銅/氧化鈰複合式奈米粒子對甲烷燃燒反應的催化活性影響。
材料分析方面我們使用SEM、XRD及DMA來分析奈米粒子的型態與晶格以及粒徑分佈,並利用觸媒催化活性測試、穩定性測試進行奈米觸媒催化能力的分析。複合式CuCeOx-NP奈米粒子具有低的起燃溫度(320 °C)以及高活性、選擇性及穩定性,藉由實驗結果我們得知添加鈰之後的奈米觸媒可以利用銅與鈰之間的界面金屬-擔體作用力效應來提升甲烷燃燒反應的催化活性,並且在Ce的莫耳比例等於0.17時達到最適化條件。同時研究中我們亦設計富氧、足氧以及貧氧的條件下進行催化活性之穩定性測試,以進一步了解甲烷燃燒反應的活性與穩定性之機制,其結果顯示在貧氧條件時,反應可能產生積碳造成觸媒的失活。而CuCeOx-NP在穩定性測試時,其在富氧、足氧及貧氧的條件下皆能維持其轉化率,顯示添加二氧化鈰有助於催化碳的氧化反應發生,以大幅降低積碳所造成的影響。而在貧氧條件下,二氧化鈰能使氧化銅能維持氧化態以避免不可逆還原而影響催化活性。同時,穩定性會隨著氧氣比例的增加而上升,此趨勢亦與觸媒表面除碳速率有關。
在第二部分實驗結果中,我們利用氣相二次鍛燒合成系統成功製備出不同氧化態的單成分CuxO-NP與複合式CuCeOx-NP-0.83及NiCeOx-NP-0.91奈米粒子,我們使用還原氣體氫氣透過改變第二次鍛燒的溫度來控制樣品的氧化態,以XRD分析佐證我們的結果,同時也進行SEM與DMA來分析樣品的形態及粒徑分布。我們也選用上述製備的氧化銅/氧化鈰、銅/氧化鈰、氧化鎳/氧化鈰、鎳/氧化鈰奈米粒子進行甲烷燃燒催化反應及二氧化碳重組反應。在甲烷燃燒反應中結果顯示添加鈰之後,觸媒轉化率也較為穩定,沒有失活現象的發生,原因為反應較容易在金屬-擔體界面處進行,此界面促進了沉積在氧化銅表面上的碳物質的氧化而減少積碳的生成。我們比較NiO-NP與NiCeOx-NP-0.91在二氧化碳重組反應中的效果,結果發現添加鈰可以增加二氧化碳的吸附速率,大幅提升反應轉化率,亦分析不同氧化態的NiCeOx-NP-0.91在二氧化碳重組反應的影響,證實反應機制皆為氧化鎳還原為金屬鎳再進行後續的反應,並且都能達到高的甲烷轉化效果。
In this study, we develop a gas-phase two-stage synthetic reaction system to fabricate nanoparticles for the applications in catalysis. Material properties, including particle size, crystallinity, elemental composition, and oxidation state, were characterized complementarily by a combination of physical, spectroscopic and microscopic approach. Our results shows that the material properties of hybrid nanoparticles were tunable by choosing the suitable chemical compositions of precursors, calcination temperatures, and the reducing gases during the gas-phase synthetic process. We have refined the existing fixed-bed activity test system by incorporating non-destructive infrared spectrometers for CH4 and CO2, which can be used to analyze the catalyst activity and stability of the metal/metal oxide catalysts.
The synthesized hybrid nanoparticles especially Cu-Ce-O NPs exhibited high activity, selectivity, high durability and operation stability, and ultra-low light-off temperatures in the catalysis. The Cu-Ce-O interfacial metal-support interaction promotes the redox cycle of surface oxidation of adsorbed methane and reduces coke formation, and we can depict the mechanisms catalyzed by CuCeOx-NP and CuO-NP.
We fabricate CuCeOx-NP and NiCeOx-NP hybrid nanoparticles with the controllable material properties by gas-phase two-stage synthetic reaction system for the applications in methane combustion and carbon dioxide reforming reaction. Results show that NiCeOx-NP hybrid nanoparticles are effective for CO2 reforming reaction due to the ability of CeO2 to release and adsorb oxygen from CO2 during the alternating redox conditions. CuxO-NP and CuCeOx-NP have been chosen as model materials to catalyze methane combustion. This work describes a prototype methodology of facile synthesis of nanocatalysts with well-controlled characteristics, which can be used to establish the correlation of material properties versus reducibility and subsequent catalytic activity for a variety of energy and environmental applications.
[1] X.Y. Jiang, G.L. Lu, R.X. Zhou, J.X. Mao, Y. Chen, X.M. Zheng, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science 173 (2001) 208-220.
[2] R.A. Dixon, R.G. Egdell, Direct observation of sintering in a model oxide supported metal catalyst - STM of Pd on WO3(001), Journal of the Chemical Society-Faraday Transactions 94 (1998) 1329-1331.
[3] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction, Journal of Catalysis 242 (2006) 103-109.
[4] T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery, Advanced Drug Delivery Reviews 65 (2013) 607-621.
[5] A.T. Bell, The impact of nanoscience on heterogeneous catalysis, Science 299 (2003) 1688-1691.
[6] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chemistry 12 (2010) 743-754.
[7] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C, Chemistry Letters (1987) 405-408.
[8] M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today 36 (1997) 153-166.
[9] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-+.
[10] G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Photoassisted Hydrogen-Production from a Water-Ethanol Solution - a Comparison of Activities of Au-Tio2 and Pt-Tio2, Journal of Photochemistry and Photobiology a-Chemistry 89 (1995) 177-189.
[11] G.R. Bamwenda, S. Tsubota, T. Kobayashi, M. Haruta, Photoinduced Hydrogen-Production from an Aqueous-Solution of Ethylene-Glycol over Ultrafine Gold Supported on Tio2, Journal of Photochemistry and Photobiology a-Chemistry 77 (1994) 59-67.
[12] M. Bowker, P.R. Davies, L.S. Al-Mazroai, Photocatalytic Reforming of Glycerol over Gold and Palladium as an Alternative Fuel Source, Catalysis Letters 128 (2009) 253-255.
[13] M.S. Park, M. Kang, The preparation of the anatase and rutile forms of Ag-TiO2 and hydrogen production from methanol/water decomposition, Materials Letters 62 (2008) 183-187.
[14] H.J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2, International Journal of Hydrogen Energy 32 (2007) 3841-3848.
[15] M. Jung, J. Scott, Y.H. Ng, Y.J. Jiang, R. Amal, CuOx dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution, International Journal of Hydrogen Energy 39 (2014) 12499-12506.
[16] G.H. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, Role of Surface/Interfacial Cu(2+) Sites in the Photocatalytic Activity of Coupled CuO-TiO(2) Nanocomposites, Journal of Physical Chemistry C 112 (2008) 19040-19044.
[17] R.J. Farrauto, M.C. Hobson, T. Kennelly, E.M. Waterman, Catalytic Chemistry of Supported Palladium for Combustion of Methane, Applied Catalysis a-General 81 (1992) 227-237.
[18] K. Eguchi, H. Arai, Low temperature oxidation of methane over Pd-based catalysts - effect of support oxide on the combustion activity, Applied Catalysis a-General 222 (2001) 359-367.
[19] L.H. Xiao, K.P. Sun, X.L. Xu, X.N. Li, Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method, Catalysis Communications 6 (2005) 796-801.
[20] R.J. Farrauto, Low-Temperature Oxidation of Methane, Science 337 (2012) 659-660.
[21] C. Chen, Y.H. Yeh, M. Cargnello, C.B. Murray, P. Fornasiero, R.J. Gorte, Methane Oxidation on Pd@ZrO2/SiAl2O3 Is Enhanced by Surface Reduction of ZrO2, Acs Catalysis 4 (2014) 3902-3909.
[22] X.L. Zou, Z.B. Rui, S.Q. Song, H.B. Ji, Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/gamma-Al2O3, Journal of Catalysis 338 (2016) 192-201.
[23] T. Machej, E.M. Serwicka, M. Zimowska, R. Dula, A. Michalik-Zym, B. Napruszewska, W. Rojek, R. Socha, Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion, Applied Catalysis a-General 474 (2014) 87-94.
[24] K. Persson, A. Ersson, K. Jansson, J.L.G. Fierro, S.G. Jaras, Influence of molar ratio on Pd-Pt catalysts for methane combustion, Journal of Catalysis 243 (2006) 14-24.
[25] T.J. Huang, H.F. Li, Direct methane oxidation over a Bi2O3-GDC system, Journal of Power Sources 173 (2007) 959-964.
[26] M. Cargnello, J.J.D. Jaen, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gamez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science 337 (2012) 713-717.
[27] P. Artizzu, E. Garbowski, M. Primet, Y. Brulle, J. Saint-Just, Catalytic combustion of methane on aluminate-supported copper oxide, Catalysis Today 47 (1999) 83-93.
[28] Z.X. Wu, J.G. Deng, Y.X. Liu, S.H. Xie, Y. Jiang, X.T. Zhao, J. Yang, H. Arandiyan, G.S. Guo, H.X. Dai, Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles: High-performance catalysts for methane combustion, Journal of Catalysis 332 (2015) 13-24.
[29] D. Ciuparu, E. Altman, L. Pfefferle, Contributions of lattice oxygen in methane combustion over PdO-based catalysts, Journal of Catalysis 203 (2001) 64-74.
[30] B. Van Devener, S.L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams, In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition, Journal of Physical Chemistry C 113 (2009) 20632-20639.
[31] A. Hellman, A. Resta, N.M. Martin, J. Gustafson, A. Trinchero, P.A. Carlsson, O. Balmes, R. Felici, R. van Rijn, J.W.M. Frenken, J.N. Andersen, E. Lundgren, H. Gronbeck, The Active Phase of Palladium during Methane Oxidation, Journal of Physical Chemistry Letters 3 (2012) 678-682.
[32] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Influence of PdO content and pathway of its formation on methane combustion activity, Catalysis Communications 6 (2005) 97-100.
[33] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Applied Catalysis a-General 234 (2002) 1-23.
[34] F. Arosio, S. Colussi, G. Groppi, A. Trovarelli, Regeneration of S-poisoned Pd/Al2O3 catalysts for the combustion of methane, Catalysis Today 117 (2006) 569-576.
[35] G.H. Zhu, J.Y. Han, D.Y. Zernlyanov, F.H. Ribeiro, Temperature dependence of the kinetics for the complete oxidation of methane on palladium and palladium oxide, Journal of Physical Chemistry B 109 (2005) 2331-2337.
[36] J. Cortes, E. Valencia, P. Araya, Two-Site Mechanism for the Oxidation Reaction of Methane on Oxidized Palladium, Journal of Physical Chemistry C 114 (2010) 11441-11447.
[37] G. Aguila, F. Gracia, J. Cortes, P. Araya, Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts, Applied Catalysis B-Environmental 77 (2008) 325-338.
[38] L.H. Hu, Q. Peng, Y.D. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, Journal of the American Chemical Society 130 (2008) 16136-+.
[39] Y.F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I.K. Surjami, J. Chen, Kinetic and spectroscopic study of methane combustion over alpha-Mn2O3 nanocrystal catalysts, Journal of Catalysis 253 (2008) 261-268.
[40] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .1. Catalyst Composition and Activity, Journal of Catalysis 153 (1995) 304-316.
[41] J. Yuan, H.X. Dai, L. Zhang, J.G. Deng, Y.X. Liu, H. Zhang, H.Y. Jiang, H. He, PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion, Catalysis Today 175 (2011) 209-215.
[42] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion, Industrial & Engineering Chemistry Research 44 (2005) 668-676.
[43] H. Ozdemir, M.A.F. Oksuzomer, M.A. Gurkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H-2/CO ratio and carbon deposition, International Journal of Hydrogen Energy 35 (2010) 12147-12160.
[44] P. Forzatti, L. Lietti, Catalyst deactivation, Catalysis Today 52 (1999) 165-181.
[45] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marci, L. Retailleau, A. Giroir-Fendler, Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity, Applied Catalysis a-General 347 (2008) 81-88.
[46] A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces, Journal of Physical Chemistry C 112 (2008) 14955-14964.
[47] V.A. Sadykov, T.G. Kuznetsova, Y.V. Frolova-Borchert, G.M. Alikina, A.I. Lukashevich, V.A. Rogov, V.S. Muzykantov, L.G. Pinaeva, E.M. Sadovskaya, Y.A. Ivanova, E.A. Paukshtis, N.V. Mezentseva, L.C. Batuev, V.N. Parmon, S. Neophytides, E. Kemnitz, K. Scheurell, C. Mirodatos, A.C. van Veen, Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catalysis Today 117 (2006) 475-483.
[48] L.F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, Co3O4/CeO2 andCo(3)O(4)/CeO2-ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catalysis Communications 6 (2005) 329-336.
[49] W.L. Yang, D. Li, D.M. Xu, X.Y. Wang, Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion, Journal of Natural Gas Chemistry 18 (2009) 458-466.
[50] M.S.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts, Journal of Physical Chemistry B 105 (2001) 10515-10522.
[51] W.P. Dow, Y.P. Wang, T.J. Huang, Yttria-stabilized zirconia supported copper oxide catalyst .1. Effect of oxygen vacancy of support on copper oxide reduction, Journal of Catalysis 160 (1996) 155-170.
[52] Y.G. Jin, C.H. Sun, S. Su, Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO, Physical Chemistry Chemical Physics 17 (2015) 16277-16284.
[53] R.Q. Yang, C.A. Xing, C.X. Lv, L. Shi, N. Tsubaki, Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4, Applied Catalysis a-General 385 (2010) 92-100.
[54] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni-Ce-Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, Acs Catalysis 3 (2013) 1638-1651.
[55] Y. Kathiraser, U. Oernar, E.T. Saw, Z.W. Li, S. Kawi, Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts, Chemical Engineering Journal 278 (2015) 62-78.
[56] Z.Y. Hou, T. Yashima, Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2, Applied Catalysis a-General 261 (2004) 205-209.
[57] B. Li, Z.X. Xu, F.L. Jing, S.Z. Luo, N. Wang, W. Chu, Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides, Journal of Energy Chemistry 25 (2016) 1078-1085.
[58] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C 120 (2016) 13638-13648.
[59] J. Dixkens, H. Fissan, Development of an electrostatic precipitator for off-line particle analysis, Aerosol Science and Technology 30 (1999) 438-453.
[60] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .2. Catalyst Characterization and Reaction-Kinetics, Journal of Catalysis 153 (1995) 317-332.
[61] F.H. Ribeiro, M. Chow, R.A. Dallabetta, Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts, Journal of Catalysis 146 (1994) 537-544.
[62] W.R. Schwartz, D. Ciuparu, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Catalytic Deactivation and Role of the Support, Journal of Physical Chemistry C 116 (2012) 8587-8593.
[63] W.R. Schwartz, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Support Interactions, Journal of Physical Chemistry C 116 (2012) 8571-8578.
[64] A. Dandekar, M.A. Vannice, Determination of the dispersion and surface oxidation states of supported Cu catalysts, Journal of Catalysis 178 (1998) 621-639.
[65] L. Kundakovic, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Applied Catalysis a-General 171 (1998) 13-29.
[66] P.M. Heynderickx, J.W. Thybaut, H. Poelman, D. Poelman, G.B. Marin, The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides, Journal of Catalysis 272 (2010) 109-120.
[67] Y.F. Lu, F.C. Chou, F.C. Lee, C.Y. Lin, D.H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu-Ce-O Hybrid Nanoparticles with High Activity and Operation Stability, Journal of Physical Chemistry C 120 (2016) 27389-27398.
[68] X.C. Zheng, X.L. Zhang, X.Y. Wang, S.R. Wang, S.H. Wu, Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation, Applied Catalysis a-General 295 (2005) 142-149.
[69] F.-C.C. Yi-Fu Lu, † Fu-Cheng Lee, Chih- Yuan Lin, De-Hao Tsai, Synergistic Catalysis of Methane Combustion using Cu-Ce-O Hybrid Nanoparticles with High Activity and Operation Stability, (2016).
[70] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chemical Reviews 116 (2016) 5987-6041.