研究生: |
張宗哲 Chang, Tsung-Che |
---|---|
論文名稱: |
合成具有多價性醣體之新穎光親和性探針並用於探討碳水化合物與凝集素間之交互作用 Synthesis and Evaluation of a Novel Photoactive Probe with Multivalent Carbohydrates for Capturing Carbohydrate-Lectin Interaction |
指導教授: | 林俊成 |
口試委員: |
汪炳鈞
陳貴通 陳玉如 謝興邦 林伯樵 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 289 |
中文關鍵詞: | 光親和性探針 、凝集素 、碳水化合物 |
外文關鍵詞: | photoaffinity group, photoaffinity probe |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝集素與醣類分子的作用關係在生物體內所影響的生物機制相當廣泛,包含了細胞與細胞間的辨識、細胞的附著、細胞間的訊號傳 遞、醣蛋白的清除、免疫系統與組織發炎,病毒、細菌對細胞的感染, 這些過程均是透過醣類與凝集素的交互作用才得以進行。研究凝集素 的最佳工具就是醣類分子,但是它們之間的作用力為非共價鍵性結 合、可逆的鍵結方式、微弱結合能力均是造成以醣分子為探針研究凝 集素的困難。
雖然醣體光親和性探針可以解決上述的問題,然而現今大部分的 醣體光親和性探針目標導向能力不足,導致無法專一地光標記凝集 素;缺乏多功能化的光親和性探針骨架,無法快速的建構多價醣體與 標籤於光親和性探針上;光標記凝集素後鮮少利用質譜分析鑑定.等 缺點。因此本論著重於開發新穎醣體光親和性探針,以提升光標記凝 集素的能力與後續分析的準確性。
本論研究分為兩個部份,第一部份為合成雙功能化光親和性探針 骨架,利用兩個 orthogonal 反應,Copper(I)-Click 反應與 Amide bond formation,快速的建構三價半乳醣光親和性探針化合物 43。化合物 43 能在蛋白質池與大腸桿菌溶解產物當中專一的光標記 RCA120(Ricinus Communis Agglutinin),並結合質譜分析近一步確認標
記的 RCA120;化合物 43 也可直接於完整、活的 HepG2 細胞膜上光標 記 ASGP-R(Asialoglycoprotein receptor)。
第二部份為設計與合成第二 代醣類光親和性探針,此探針由化合物 66 與 45 組成,利用多價醣體 光親和性探針、bio-orthogonal chemistry、光斷裂型官能基與功能化磁 性奈米粒子,達到專一地光標記並濃縮凝集素,藉以提升後續質譜分 析的偵測極限與準確性。
Carbohydrate-lectin interactions involve in various biological recognitions and mediate many processes such as cellular recognition, adhesion, signal transduction, glycoprotein clearance, immunomodulation, inflammation, and host-pathogen recognition. To fully understand the biological implications of carbohydrate-lectin interactions in living organisms, it is imperative to investigate and profile their functions under pathological conditions.
However, it is quite difficult to probe the carbohydrate interacting protein(s) due to the intrinsic characters of carbohydrate-lectin interaction: non-covalent, reversible, and weak binding affinity.
Thus, for low affinity interaction between carbohydrate ligand and lectin, the monovalent carbohydrate ligand conjugated with photoaffinity probe may not be suitable for target lectin labeling. The multivalent carbohydrate structures which greatly enhance the weak affinity of individual mono-ligands to their binding lectins is a solution to overcome the weak affinity problem.
We designed a novel and multifuntional photoaffinity scaffold that derived from a glutamic acid core, carried a powerful photo-cross-linker, 3-trifluoromethyl-3-phenyl-diazirine, and two well-defined orthogonal synthetic handles that empower subsequent conjugations. Multivalent carbohydrate and tag of the probe were conveniently conjugated via orthogonal reactions, Cu(I) catalyzed click reaction and amide bond formation. The tri-valent (compound 43) galactose photoaffinity probe demonstrate that the designed probe is able to selectively label the target
lectin, RCA120 (Ricinus communis Agglutinin) in E. Coli. lysates and ASGP-R (Asialoglycoprotein receptor) on intact HepG2 cell membrane.
Moreover, we had synthesized a second generation carbohydrate photoaffinity probe for enrichment of lectin by combination of multivalent carbohydrate, bio-orthogonal chemistry, photochemical cleavage group, and functional magnetic nanoparticle.
1. Vodovozova, E. L. Photoaffinity labeling and its application in structural biology. Biochemistry(Moscow) 2007, 72, 1-20.
2. Singh, A.; Thornton, E. R.; Westheimer, F. H. The photolysis of diazoacetyltrypsin. J. Biol. Chem. 1962, 237, 3006-3008.
3. Appel, W. Chymotrypsin: molecular and catalytic properties. Clin. Biochem. 1986, 19(6), 317–322.
4. Meier, H.; Zeller, K.-P. The wolff rearrangement of -diazo carbonyl compounds. Angew. Chem. Int. Ed. 1975, 14, 32–43.
5. Graham. W. H. The reaction of imines with difluoramine. A method of preparation of diazirines. J. Am. Chem. Soc. 1966, 88, 4677-4681.
6. Smith, R. A. G.; Knowles, J. R. Potential reagents for photolabeling of biological receptor sites. J. Am. Chem. Soc. 1973, 95, 5072-5073.
7. Smith, R. A. G.; Knowles, J. R. The preparation and photolysis of 3-Aryl-3H-diazirines. J. Chem. Soc. Perkin II. 1975, 686-694.
8. Church, R. F. R.; Weiss, M. J. Synthesis and properties of small functionalized diazirine molecules some observations on the reaction of a diaziridine with the iodine-iodide ion system. J. Org. Chem. 1970, 35, 2465-2471.
9. Stevens, I. D. R. The thermal decomposition of diaziriens: 3-(3-methyldiazirin-3-yl)propan-1-ol and 3-(3-methyldiazirin-3-yl) propanoic acid. J. Chem. Soc. Perkin Trans. II 1990, 661-667.
10. Brunner, J.; Senn, H.; Richards, F. M. 3-Trifluoromethyl-3- phenyldiazirine. J. Biol. Chem. 1980, 255, 3313-3318.
11. Fleet, G. W. J.; Porter, R. R.; Knowles, J. R. Affinity labelling of antibodies with aryl nitrene as reactive group. Nature 1969, 224, 511-512.
12. Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res. 2000, 33, 765-771.
13. Gritsan, N. P.; Yuzawa, T.; Platz, M. S. Direct observation of singlet phenylnitrene and measurement of its rate of rearrangement. J. Am. Chem. Soc. 1997, 119, 5059-5060.
14. (a) Brown, R. L.; Gerber, W. V.; Karpen, J. W. Specific labeling and permanent activation of the retinal rod cGMP-activated channel by the photoaffinity analog 8-p-azidophenacylthio-cGMP. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5369-5373. (b) Resek, J. F.; Rucho, A. E. Photoaffinity labeling the -adrenergic receptor with an iodoazido derivative of norepinephrine. J. Biol. Chem. 1988, 263, 14410-14416.
15. (a) Leyva, E.; Young, M. J. T.; Platz, M. S. High yields of formal CH insertion products in the reactions of polyfluorinated aromatic nitrenes. J. Am. Chem. Soc. 1986, 108, 8306. (b) Young, M. J. T.; Platz, M. S. Polyfluorinated aryl azides as photoaffinity labeling reagents; the room temperature CH insertion reactions of singlet pentafluorophenyl nitrene with alkanes. Tetrahedron Lett. 1989, 30, 2199-2202.
16. Galardy, R. E.; Craig, L. C.; Jamieson, J. D.; Printz, M. P. Photoaffinity labeling of peptide hormone binding sites. J. Biol. Chem. 1974, 249, 3510-3518.
17. Dorman, G.; Prestwich, G. D. Benzophenone photophores in biochemistry. Biochemistry 1994, 33, 5661-5673.
18. Weber, P. J. A.; Becksickinger, A. G. J. Comparsion of the photochemical behavior of four different photoactivatable probes. Peptide Res. 1997, 49, 375-383.
19. Tate, J. J.; Persinger, J.; Bartholomew, B. Survey of four different photoreactive moieties for DNA photo affinity labeling of yeast RNA polymerase III transcription complexes. Nucleic Acids Res. 1998, 26, 1421-1426.
20. Kilpatrick, D. C. Animal lectins: a historical introduction and overview. Biochim. Biophys. Acta. 2002, 1572, 187-197.
21. Ambrosi, M.; Cameron, N. R.; Davis, B. G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 2005, 3, 1593-1608.
22. Sharon, N.; Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004, 14, 53-62.
23. Bertozzi, C. R.; Kiessling, L. L. Chemical glycobiology. Science 2001, 291, 2357-2364.
24. Drickamer, K.; Taylor, M. E. Biology of animal lectins. Annu. Rev. Cell Biol. 1993, 9, 237-264.
25. Kiessling, L. L.; Gestwichi, J. E.; Strong, L. E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. 2006, 45, 2348-2368.
26. Lee, S. J.; Evers, S.; Roeder, D.; Parlow, A. F.; Risteli, J.; Risteli, L.; Lee, Y. C.; Feizi, T.; Langen, H.; Nussenzweig, M. C. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 2002, 295, 1898-1901.
27. Sperandio, M.; Gleissner, C. A.; Ley, K. Glycosylation in immune cell trafficking. Immunol. Rev. 2009, 230, 97-113. (b) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the immune system. Science, 2001, 291, 2370-2376.
28. Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 2005, 4, 477-488.
29. Lis, H.; Sharon, N. Lectin: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998, 98, 637-674.
30. Tanaka. Y.; Kohler, Y. J. Photoactivatable crosslinking sugars for caoturing glycoprotein interactions. J. Am. Chem. Soc. 2008, 130, 3278-3279.
31. Keppler, O. T.; Hinderlich, S.; Langner, J.; Schwartz-Albiez, R.; Reutter, W.; Pawlita, M. UDP-GlcNAc 2-Epimerase: A regulator of cell surface sialylation. Science 1999, 284, 1372-1376.
32. Kelm, S.; Brossmer, R.; Isecke, R.; Gross, H.-J.; Strenge, K.; Schauer, R. Functional groups of sialic acids involved in binding to siglecs(sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 1998, 255, 663-672.
33. Makamura, Y.; Miyatake, R.; Ueda, M. Enantiodifferential approach for the detection of the target membrane protein of the jasmonate glycoside that controls the leaf movement of Albizzia saman. Angew Chem. Int. Ed. 2008, 47, 7289-7292.
34. Kannappan, R.; Ando, M.; Furuhata, K.; Uda, Y. Photoaffinity labeling of sialidase with a biotin-conjugated phenylaminodiazirine derivative of 2, 3-didehydro-2-deoxy-N-acetylneuraminic acid. Biol. Pharm. Bull. 2008, 31, 352-356.
35. Ballel, L.; Alink, K. J.; Slijper, M.; Versluis, C. Liskamp, R. M.; Pieters, R. J. A new chemical probe for proteomics of carbohyrate-binding proteins. ChemBioChem 2005, 6, 291-295.
36. Prioni, S.; Mauri, L.; Loberto, N.; Casellato, R.; Chigorno, V.; Karagogeos, D.; Prinetti, A.; Sonnino, S. Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: a study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconjugate J. 2004, 21, 461-470.
37. Qvit, N.; Monderer-Rothkoff, G.; Ido, A.; Shalev, D. E.; Amster-Choder, O.; Gilon, C. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates. Biopolymers 2008, 90, 526-536.
38. Wiegand, M.; Lindhorst, T. K. Synthesis of photoactive -mannosides and mannosyl peptides and their evaluation for lectin labeling. Eur. J. Org. Chem. 2006, 21, 4841-4851.
39. Hatanaka, Y.; Kempin, U.; Jong-Jip, P. One-step synthesis of biotinyl photoprobes from unprotected carbohydrates. J. Org. Chem. 2000, 65, 5639-5643.
40. Nakata, E.; Nagase, T.; Shinkai, S.; Hamachi, I. Coupling a natural receptor protein with an artifical receptor to afford a semisynthetic fluorescent biosensor. J. Am. Chem. Soc. 2004, 126, 490-495.
41. Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933.
42. Lee, R. T.; Lee, Y. C. Preparation of a high-affinity photolabeling reagent for the Gal/GalNAc lectin of mammalian liver: demonstration of galactose-combining sites on each subunit of rabbit hepatic lectin. Biochemistry, 1986, 25, 6835-6841.
43. Lauc, G.; Lee, R. T.; Dumić2 J.; Lee, Y. C. Photoaffinity glycoprobes-a new tool for the identification of lectins. Glycobiology 2000, 10, 357-364.
44. Lee, M.-R.; Jung, D.-W.; Williams, D.; Shin, I. Efficient solid-phase synthesis of trifunctional probes and their application to the detection of carbohydrate-binding proteins. Org. Lett. 2005, 7, 5477-5480.
45. Ballell, L.; Scherpenzeel, M. V.; Buchalova, K.; Liskamp, R. M. J.; Pieters, R. J. A new chemical probe for the detection of the cancer-linked galectin-3. Org. Biomol. Chem. 2006, 4, 4387-4394.
46. MacLennan, D. H.; Phillips, M. S. Malignant hyperthermia. Science 1992, 256, 789-794.
47. Meissner, G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 1994, 56, 485-508.
48. Palnitkar, S. S.; Bin, B.; Jimenez, L. S.; Morimoto, H.; Williams, P. G.; Paul-Pletzer, K.; Parness, J. [3H]Azidodantrolene: synthesis and use in identification of a putative skeletal muscle dantrolene binding site in sarcoplasmic reticulum. J. Med. Chem. 1999, 42, 1872-1880.
49. Paul-Pletzer, K.; Yamamoto, T.; Ikemoto, N.; Jimenez, L. S.; Morimoto, H.; Williams, P. G.; Ma, J.; Parness, J. Probing a putative dantrolene-binding site on the cardiac ryanodine receptor. Biochem. J. 2005, 387, 905-909.
50. Kramer, W.; Corsiero, D.; Girbig, F.; Jahne, G. Rabbit small intestine does not contain an annexin II/caveolin 1 complex as a target for 2-azetidinone cholesterol absorption inhibitors. Biochim. Biophys. Acta – Biomembranes 2006, 1758, 45-54.
51. Lee, H. K.; Zheng, Y. F.; Xiao, X. Y.; Bai, M.; Sakakibara, J.; Ono, T.; Prestwich, G. D. Photoaffinity labeling identifies the substrate-binding site of mammalian squalene epoxidase. Biochem. Biophys. Res. Commun. 2004, 315, 1-9.
52. Ziebell, M. R.; Nirthanan, S.; Husain, S. S.; Miller, K. W.; Cohen, J. B. Identification of binding sites in the nicotinic acetylcholine receptor for [3H]Azietomidate, a photoactivatable general anesthetic. J. Biol. Chem. 2004, 279, 17640-17649.
53. Walsh, C. T. Posttranslational Modifications of Proteins: Expanding Nature’s InVentory; Roberts and Co. Publishers: Greenwood Village, CO, 2006.
54. Wu, J. W.; Hu, M.; Chai, J.; Seoane, J.; Huse, M.; Li, C.; Rigotti, D. J.; Kyin, S.; Muir, T. W.; Fairman, R.; Massague, J.; Shi, Y. Crystal structure of a phosphorylated Smad2: recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-signaling. Mol. Cell 2001, 8, 1277-1289.
55. Ottesen, J. J.; Huse, M.; Sekedat, M. D.; Muir, T. W. Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated TβRI kinase. Biochemistry 2004, 43, 5698-5706.
56. Vila-Perello´, M.; Pratt, M. R.; Tulin, F.; Muir, T. W. Covalent capture of phospho-dependent protein oligomerization by site-specific incorporation of a diazirine photo-cross-linker. J. Am. Chem. Soc. 2007, 129, 8068-8069.
57. Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlen, M.; The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501-510.
58. Wu, S. C.; Wong, S. L. Engineering soluble monomeric streptavidin with reversible biotin binding capability. J. Biol. Chem. 2005, 280, 23225-23231.
59. Szychowski, J.; Mahdavi, A.; Hodas, J. J. L.; Bagert, J. D.; Ngo, J. T.; Landgraf, P.; Dieterich, D. C.; Schuman, E. M.; Tirrell, D. A. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J. Am. Chem. Soc. 2010, 132, 18351-18360.
60. Shimkus, M.; Levy, J.; Herman, T. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc. Nati. Acad. Sci. USA 1985, 82, 2593-2597.
61. Nessen, M. A.; Kramer, G.; Back, J.; Baskin, J. M.; Smeenk, L. E. J.; Koning, L. J. D.; Maarseveen, J. H. V.; Jong, L. D.; Bertozzi, C. R.; Hiemstra, H.; Koster, C. G. D. Selective enrichment of azide-containing peptides from complex mixtures. J. Proteome Res. 2009, 8, 3702-3711.
62. Veken, P. V. D.; Dirksen, E. H. C.; Ruijter, E.; Elgersma, R. C.; Heck, A. J. R.; Rijkers, D. T. S.; Slijper, M.; Liskamp, R. M. J. Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. ChemBioChem 2005, 6, 2271-2280.
63. Fauq, A. H.; Kache, R.; Khan, M. A.; Vega, I. E. Synthesis of acid-cleavable light isotope-coded affinity tags (ICAT-L) for potential use in proteomic expression profiling analysis. Bioconjugate Chem. 2006, 17, 248-254.
64. Geurink, P. P.; Florea, B. I.; Li, N.; Witte, M. D.; Verasdonck, J. Kuo, C.-L. Marel, G. A. V. D.; Overkleef, H. S. A cleavable linker based on the levulinoyl ester for activity-based protein profiling. Angew. Chem. Int. Ed. 2010, 49, 6802-6805.
65. Dirksen, A.; Yegneswaran, S.; Dawson, P. E. Bisaryl hydrazones as exchangeable biocompatible linkers. Angew. Chem. Int. Ed. 2010, 49, 2023-2027.
66. Olejnik, J.; Sonar, S.; Krzymanska-olejnik, E.; Rothschild, K. J. Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc. Natl. Acad. Sci. USA 1995, 92, 7590-7594.
67. Wang, Z.; Udeshi, N. D.; O’Malley, M.; Shabanowitz, J.; Hunt, D. F.; Hart, G. W. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell Proteomics 2010, 9, 153-160.
68. Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.
69. (a) Laurent, S.; Forge, D.; Port, Marc.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem. Rev. 2008, 108, 2064-2110. (b) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem. Int. Ed. 2007, 46, 1222-1244.
70. Hein, J. E.; Fokin, V. V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 2010, 39, 1302-1315.
71. Hatanaka, Y.; Hashimoto, M.; Nakayama, H.; Kanaoka, Y. Synthesis of nitro-substituted aryl diazirines. An entry to chromogenic carbene precursors for photoaffinity labeling. Chem. Phram. Bull. 1994, 42, 826-831.
72. Chabre, Y. M.; Contino-Ppin, C.; Placide, v.; Shiao, T. C.; Roy, R. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J. Org. Chem. 2008, 73, 5602-5605.
73. Danguy, A.; Camby, I.; Kiss, R. Galectins and cancer. Biochim. Biophys. Acta. 2002, 1572, 285-293.
74. Morris, K. N.; Wool, I. G. Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Proc. Natl. Acad. Sci. USA 1992, 89, 4869-4873.
75. Szewczak, A. A.; Moore, P. B.; Chan, Y.-L.; Wool, I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA for catalysis by ricin A chain. Proc. Natl. Acad. Sci. USA 1993, 90, 9581-9585.
76. Katzin, B. J.; Collins, E. J.; Robertus, J. D. Structure of ricin B-chain at 2.5 Å resolution. Proteins 1991, 10, 251-259.
77. Sweeney, E. C.; Tonevitsky, A. G.; Temiakov, D. E.; Agapov, I. I.; Saward, S.; Palmer, R. A. Preliminary Crystallographic Characterization of Ricin Agglutinin. Proteins: Structure, Function, and Genetics 1997, 28, 586-589.
78. Spain, S. G.; Cameron, N. R. The binding of polyvalent galactosides to the lectin Ricinus communis agglutinin 120 (RCA120): an ITC and SPR study. Polym. Chem. 2011, 2, 1552-1560.
79. Yamashita, K.; Tachibana, Y.; Kobata, A. The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 1978, 253, 3862-3869.
80. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76-85.
81. 由實驗室同仁,景晴與千蕙同學將生物素(Biotin)修飾於MBP(Maltose Binding Protein),並提供該論文的測試使用。
82. Jenne, A.; Famulok, M. Disruption of the streptavidin interaction with biotinylated nucleic acid probes by 2-mercaptoethanol. Biotechniques 1996, 26, 249–254.
83. (a) Ashwell, G.; Morell, A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 1974, 41, 99-128. (b) Ashwell, G.; Harford, J. Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 1982, 51, 531-554.
84. Weigel, P. H.; Yik, J. H. N. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta. 2002, 1572, 341-343.
85. Khoreva, O.; Stokmaiera, D.; Schwardta, O.; Cuttinga, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bio. Med. Chem. 2008, 16, 5216-5231.
86. HepG2細胞是由千蕙同學於清華大學生命科學所莊永仁實驗室培養出,以供給本論文研究使用。
87. (a) Ashcroft, A. E. Protein and peptide identification: the role of mass spectrometry in proteomics. Nat. Prod. Rep. 2003, 20, 202-215. (b) Mo, W.; Karger, B. L. Analytical aspects of mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 2002, 6, 666-675.
88. Wilm, M.; Mann, M. Analytical properties of the nanoelectrosprayion source. Anal. Chem. 1996, 68, 1-8.
89. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046-15047.
90. Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793-16797.
91. Schultz, M. K.; Parameswarappa, S. G.; Pigge, F. C. Synthesis of a DOTA-Biotin conjugate for radionuclide chelation via Cu-free click chemistry. Org. Lett. 2010, 12, 2398-2401.
92. Holmes, C. P. Model studies for new o-nitrobenzyl photolabile linkers: substituent effects on the rates of photochemical cleavage. J. Org. Chem. 1997, 62, 2370-2380.
93. Dumez, E.; Snaith, J. S.; Jackson, R. F. W. Synthesis of macrocyclic potential protease inhibitors using a generic scaffold. J. Org. Chem. 2009, 67, 4882-4892.
94. (a) Wang, Q. X.; Phanstiel IV, O. Total synthesis of acinetoferrin J. Org. Chem. 1998, 63, 1491-1495. (b) Xiao, S.; Fu, N.; Peckham, K.; Smith, B. D. Efficient synthesis of fluorescent squaraine rotaxane dendrimers. Org. Lett. 2010, 12, 140-143.
95. Biraboneye, A. C.; Madonna, S.; Laras, Y.; Krantic, S.; Maher, P.; Krau, J.-L. Potential neuroprotective drugs in cerebral ischemia: new saturated and polyunsaturated lipids coupled to hydrophilic moieties: synthesis and biological activity. J. Med. Chem. 2009, 52, 4358-4369.
96. Cecioni, S.; Oerthel, V.; Iehl, J.; Holler, M.; Goyard, D.; Praly, J.-P. Imberty, A.; Nierengarten, J.-F.; Vidal, S. Synthesis of dodecavalent fullerene-based glycoclusters and evaluation of their binding properties towards a bacterial lectin. Chem. Eur. J. 2011, 17, 3252 -3261.
97. Yu, C.-C.; Kuo, Y.-Y.; Liang, C.-F.; Chien, W.-T.; Wu, H.-T.; Chang, T.-C.; Jan, F.-D. Lin, C.-C. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjugate Chem. 2012, 23, 714-724.
98. He, B.; Velaparthi, S.; Pieffet, G.; Pennington, C.; Mahesh, A.; Holzle, D. L.; Brunsteiner, M.; Breemen, R. V.; Blond, S. Y.; Petukhov, P. A. Binding ensemble profiling with photoaffinity labeling (BEProFL) approach: mapping the binding poses of HDAC8 inhibitors. J. Med. Chem. 2009, 52, 7003-7013.
99. Wu, H.-T.; Hsu, C.-C.; Tasi, C.-F.; Lin, P.-C.; Lin, C.-C.; Chen, Y.-J. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enruchment of multiply phosphorylated peptides. Proteomics 2011, 11, 2639-2653.