簡易檢索 / 詳目顯示

研究生: 李偉志
Li, Wei-Chih
論文名稱: 肥皂膜與肥皂泡的頸縮
Necking in soap film and soap bubble
指導教授: 洪在明
Hong, Tzay-Ming
口試委員: 蔡日強
Tsai, Jih-Chiang
蕭百沂
Hsiao, Pai-Yi
黃仲仁
Huang, Jung-Ren
潘國隆
Pan, Kuo-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 42
中文關鍵詞: 頸縮肥皂膜自相似
外文關鍵詞: soap film, necking, self-similarity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肥皂泡是許多人童年中的回憶,從沖澡到洗碗,生活中隨處可見。肥皂泡在拉
    伸時,我們分析肥皂泡的變細的過程。相較於已被廣被研究的肥皂膜塌縮,
    我們專注在體積守恆的肥皂泡。這份研究發現自相似現象的出現在以前探討
    中的primary necking。藉由cosine-similarity去區分肥皂膜與肥皂泡的字相似程
    度。V是灌氣量的體積,R是泡泡環的半徑。當V/R3 = constant時,不同半徑
    的primary necking 區間會有相同的輪廓。上述的結果顯示出我們的肥皂泡具有
    普適性。在這篇論文中,也探討了不同灌氣量與不同拉伸速度對肥皂泡頸縮造
    成的影響。先前的研究討論到,泡泡膜塌縮的不可逆區分成許多不同的區間。
    肥皂膜與肥皂泡之間,有著需多相似與不同之處。最後,這份研究也探討了,
    灌氣量如何影響泡泡膜最後分離時的距離。


    All children enjoy blowing soap bubbles that also show up in our bath and when we wash dishes. We analyze the thinning of soap bubble neck when it is stretched. To contrast with the collapsing of an open film that has been widely studied before, we concentrate on volume- conserved bubble. Self-similarity is newly found in the regime of primary necking. By using cosine-similarity, we can distinguish the level of self-similarity between open and closed systems. Contours in primary necking have same curvature when V/R3 =constant where V is pumping volume and R is the radius of rings. This result shows soap bubble has universal property. This thesis also discusses how volume and pulling speed affect the properties in soap bubble necking. Previous research found there are several parts in the irreversible regime of soap film collapsing. Soap bubble collapsing have similar and different parts in irreversible regime compare to soap films. After breaking, the separating length of soap bubbles relates to pumping volume.

    1 Introduction 1 1.1 Motivation 1 1.2 Literature review 3 1.2.1 Dynamics of inviscid capillary breakup: collapse and pinch- off of a film bridge 3 1.2.2 Observations of singularity formation during the capillary collapse and bubble pinch-off of a soap film bridge 5 1.2.3 Self-similar capillary pinch-off of an inviscid fluid 6 1.2.4 Persistence of memory in drop breakup: the breakdown of universality 8 1.2.5 Diffusion-dominated pinch-off of ultralow surface tension fluids 8 2 Experimental method 12 2.1 Sample preparation 12 2.2 Physical properties of soap solution 14 2.3 Experimental setup 16 2.4 Edge detection 17 3 Experimental Results 18 3.1 Soap bubble and film 18 3.2 Equilibrium state with different boundary and initial conditions 20 3.3 Self-similarity 22 3.4 Universality 23 3.5 Relation between critical length and volume 24 4 Theoretical approach 25 4.1 Energy minimization 25 4.2 Dimensionless integral equations 26 4.3 Theoretical solution 27 4.4 Relation between critical length and volume 28 4.5 Variation of separation length 30 5 Conclusion and discussions 31 Appendices 33 A Apparatus 34 B Cosine similarity 37 C Convection of surfactant 38 D Extensional viscosity 39 E Is the volume of bubble really conserved? 40 Bibliography 41 Bibliography 41

    [1] Y. J. Chen and P. H. Steen, J. Fluid Mech. 341, 245 (1997).

    [2] N. D. Robinson and P. H. Steen, J. Colloid Interface Sci. 241, 448 (2001).

    [3] S. A. Cryer and P. H. Steen, J. Colloid Interface Sci. 151, 276 (1992).

    [4] J. R. Lister and H. A. Stone, Phys. Fluids 10, 2758 (1998).

    [5] K. L. Huang, K. L. Pan, and C. Josserand, Phys. Rev. Lett. 123, 234502 (2019).
    [6] R. F. Day, E. J. Hinch, and J. R. Lister, Phys. Rev. Lett. 80, 704 (1998).

    [7] A. U. Chen, P. K. Notz, and O. A. Basaran, Phys. Rev. Lett. 88, 174501 (2002).
    [8] I. Cohen, M. P. Brenner, J. Eggers ,and S. R. Nagel, Phys. Rev. Lett. 83, 1147 (1999).
    [9] Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel, G. Wegdam, J. Eggers,
    H. N. W. Lekkerkerker, and D. Bonn, Phys. Rev. Lett. 97, 244502 (2006).

    [10] H. Y. Lo , Y. Liu , S. Y. Mak , Z. Xu , Y. Chao , K. J. Li , H. C. Shum, and L. Xu, Phys. Rev. Lett. 123, 134501 (2019).
    [11] A. A. Pahlavana, H. A. Stone, G. H. McKinley, and R. Juanes, PNAS 116, 13780 (2019).
    [12] P. Doshi, I. Cohen, W. W. Zhang, M. Siegel, P. Howell, O. A. Basaran, and S. R. Nagel, Science 302, 1185 (2003).
    [13] Y. Yoon and M. A. McNiven, Current Biology 11, 67 (2001).

    [14] X. Zhang, R. S. Padgett, and O. A. Basaran, J. Fluid Mech. 329, 207 (1996).

    [15] A. Sack and T. P¨oschel, Am. J. Phys. 85, 649 (2017).

    [16] V. M. Starov, A. Ryck and M. G. Velarde, J. Colloid Interface Sci. 190, 104 (1997).
    [17] G. H. McKinley and T. Sridhar, Annu. Rev. Fluid Mech. 34, 375 (2002).

    QR CODE