研究生: |
譚智仁 |
---|---|
論文名稱: |
以RNA干擾法抑制SARS尖釘蛋白基因的表現 Inhibition of SARS spike gene expression by RNA interference |
指導教授: |
張大慈
Margaret Dah-Tsyr Chang 廖有地 You-Di Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 腺病毒載體 、勝任細胞 、冠狀病毒 、細胞毒性 、焦礦酸二乙酯 、表現載體 、凝膠電泳 、信使核糖核酸 、硝基纖維素紙 、北方點漬法 、核苷酸 、尼龍膜 、質體 、溶菌斑測試 、聚合酵素鏈反應 、引子 、探針 、限制酶 、尖釘蛋白 、受質 、模板 、病毒力價 、定量聚合酵素鏈反應 |
外文關鍵詞: | adenoviral vector, competent cell, coronavirus, cytotoxicity, Diethylpyrocarbonate, expression vector, gel electrophoresis, mRNA, nitrocellulose paper, Northern blotting, nucleotide, nylon membrane, plasmid, plaque assay, polymerase chain reaction, primer, probe, restriction enzyme, spike protein, substrate, template, virus titer, quantitative polymerase chain reaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從2002年末至2003年初,由新種冠狀病毒所引起的嚴重急性呼吸道症候群(SARS)的疫情,在世界各地相繼爆發,引起人們對於病毒的恐慌;面對各種病毒威脅人類的健康,研究人員急欲尋求有效的抗病毒藥物,但目前仍未發展出有效藥物。而RNA干擾技術( RNA interference,RNAi )則提供了研發抗病毒藥物新的方向,原理是細胞內的小片段干擾RNA (siRNA)會活化轉錄後基因沉默作用(Post-transcriptional gene silencing,PTGS),使具序列同源互補特性的mRNA被降解,以阻止該基因的表現;RNA干擾技術可阻斷因病毒感染或基因缺陷等異常基因的表現,達到治療的目的。C1+ SARS 1000質體可表現SARS病毒部份尖釘蛋白與綠螢光蛋白融合mRNA;將C1+ SARS 1000質體與siRNA片段表現質體共同轉染至HeLa細胞中,使尖釘蛋白的mRNA作為siRNA片段作用的受質。之後以北方吸漬法、反轉錄PCR與定量PCR加以檢測尖釘蛋白mRNA之表現量。我們證明由質體轉染所表現的siRNA片段可以有效專一的抑制SARS病毒尖釘蛋白RNA的表現,在我們所設計的4種siRNA序列中,有一siRNA序列可使細胞內的尖釘蛋白mRNA表現量降低至20%左右。為增加RNAi表現效率及降低細胞毒性,我們改以腺病毒表現載體取代轉染試劑的方式,我們觀察到其高表現量的siRNA序列更能專一性的降低細胞內SARS病毒尖釘蛋白的mRNA。我們的研究證明了結合腺病毒表現載體和RNA干擾技術的可行性,在未來也許可應用於治療SARS或其他方面的疾病。
Serious outbreaks of severe acute respiratory syndrome (SARS), caused by the newly discovered coronavirus SARS-CoV, occurred between late 2002 and early 2003. RNA interference (RNAi) is a process by which the introduced small interfering RNA (siRNA) could bind to the homologous RNA sequence and the binding adduct is degraded by RISC complex. Recently, siRNA- induced RNA interference may provide a new approach for the therapy of pathogenic or genetic diseases. The plasmid C1+ SARS 1000, which contains the genes encoding eGFP and part of SARS-Cov S protein, was co-transfected with plasmid expressing specific siRNAs for SARS-Cov S gene in HeLa cells. Among 4 siRNA sequences, we found that one siRNA, name IIIsas, could specifically reduce the expression of spike mRNA over 80% detected by Northern bloting, reverse transcription PCR and quantitative PCR. The downregulation of SARS-S gene expression was correlated with the concentrations of the siRNA expression vector employed in a range of 4.5~18 □g plasmid DNA. The siRNA was delivered by adenoviral vector to overcome the low transfection efficiency of plasmid DNA. The results showed that the expression of SARS-spike protein gene was markedly reduced to 6%. Our studies demonstrate the feasibility of using adenoviral vector to deliver and express the siRNA of specific gene for the therapy of viral infection and other diseases in future.
1. Oxford, J.S., Bossuyt, S. and Lambkin, R. (2003) A new infectious disease challenge: Urbani severe acute respiratory syndrome (SARS) associated coronavirus. Immunology, 109, 326-328.
2. Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., Mc.Donald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C. and Roper, R.L. (2003) The Genome sequence of the SARS-associated coronavirus. Science, 300, 1399-1404.
3. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., Mc.Caustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J. and Bellini, W.J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300, 1394-1399.
4. Qin, Z.L., Zhao, P., Zhang, X.L., Yu, J.G., Cao, M.M., Zhao, L.J., Luan, J. and Qi, Z.T. (2004) Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem. Biophys. Res. Commun., 324, 1186-1193.
5. He, M.L., Zheng, B., Peng, Y., Peiris, J.S., Poon, L.L., Yuen, K.Y., Lin, M.C., Kung, H.F. and Guan, Y. (2003) Inhibition of SARS-associated coronavirus infection and replication by RNA interference. JAMA., 290, 2665-2666.
6. Hui, D.S. and Wong, G.W. (2004) Advancements in the battle against severe acute respiratory syndrome. Expert Opin. Pharmacother, 5, 1687-1693.
7. Lu, A., Zhang, H., Zhang, X., Wang, H., Hu, Q., Shen, L., Schaffhausen, B.S., Hou, W. and Li, L. (2004) Attenuation of SARS coronavirus by a short hairpin RNA expression plasmid targeting RNA-dependent RNA polymerase. Virology, 324, 84-89.
8. Qin, L., Xiong, B., Luo, C., Guo, Z., Hao, P., Su, J., Nan, P., Feng, Y., Shi, Y.X., Yu, X.J., Luo, X.M., Chen, K.X., Shen, X., Shen, J.H., Zou, J.P., Zhao, G.P., Shi, T.L., He, W.Z., Zhong, Y., Jiang, H.L. and Li, Y.X. (2003) Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta. Pharmacol. Sin., 27, 489-496.
9. Shi, Y., Yang, d., H., Xiong, J., Jia, J., Huang, B. and Jin, Y.X. (2005) Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res., 15, 193-200.
10. Wang, Z., Ren, L., Zhao, X., Hung, T., Meng, A., Wang, J. and Chen, Y.G. (2004) Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J. Virol., 78, 7523-7527.
11. Wu, C.J., Huang, H.W., Liu, C.Y., Hong, C.F. and Chan, Y.L. (2005) Inhibition of SARS-CoV replication by siRNA. Antiviral Res., 65, 45-48.
12. Zhang, Y., Li, T., Fu, L., Yu, C., Li, Y., Xu, X., Wang, Y., Ning, H., Zhang, S., Chen, W., Babiuk, L.A. and Chang, Z. (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett., 560, 141-146.
13. Sledz, C.A., Holko, M., de, V., M.J., Silverman, R.H. and Williams, B.R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol., 5, 834-839.
14. Guo, S. and Kemphues, K.J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81, 611-620.
15. Gregory, J.H. (2002) RNA interference. Nature, 418, 244 - 251.
16. Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208.
17. Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P., Bhatnagar, R.K. and Mukherjee, S.K. (2003) RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 67, 657-685.
18. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol., 22, 326-330.
19. Yu, J.Y., DeRuiter, S.L. and Turner, D.L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci., 99, 6047-6052.
20. Sui, G., Soohoo, C., Affar, e.B., Gay, F., Shi, Y., Forrester, W.C. and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci., 99, 5515-5520.
21. Paule, M.R. and White, R.J. (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res., 28, 1283-1298.
22. Xia, X.G., Zhou, H., Ding, H., Affar, e., B., Shi, Y. and Xu, Z. (2003) An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res., 31, e100.
23. Boden, D., Pusch, O., Lee, F., Tucker, L., Shank, P.R. and Ramratnam, B. (2003) Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res., 31, 5033-5038.
24. Novina, C., Murray, M.F., Dykxhoorn, D.M., Beresford, P.J., Riess, J., Lee, S., Collman, R., Lieberman, J., Shankar, P. and Sharp, P.A. (2002) siRNA-directed inhibition of HIV-1 infection. Nat. Med., 8, 681-686.
25. Stevenson, M. (2003) Dissecting HIV-1 through RNA interference. Nat. Rev. Immunol., 3, 851-858.
26. Bitko, V., Musiyenko, A., Shulyayeva, O. and Barik, S. (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med., 1, 50-55.
27. Shen, C. and Reske, S.N. (2004) Adenovirus-delivered siRNA. Methods Mol. Biol., 252, 523-532.
28. Zhao, L.J., Jian, H. and Zhu, H. (2003) Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene, 316, 137-141.
29. Scherer, L.J. and Rossi, J.J. (2003) Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol., 21, 1457-1465.
30. Wilson, J.A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I.G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S. and Richardson, C.D. (2003) RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci., 100, 2783-2788.
31. Joseph, A. and Ramesh, A. (2005) HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res. Ther., 13, 1-12.