簡易檢索 / 詳目顯示

研究生: 江振宏
Chiang, Chen-Hung
論文名稱: 鏡像聚乳酸結晶螺旋形態之旋性控制與同掌性訊息之傳遞
Helical Morphologies of Enantiomeric Polylactides in Crystalline Phases with Homochiral Evolution
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 吳逸謨
孫亞賢
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 螺旋結晶
外文關鍵詞: helix, crystalline
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Herein, we aim to examine the forming mechanisms of banded spherulite (the presence of concentric rings or extinction bands under polarizes light microscope (PLM) observations) with exclusive optical activity (i.e., phase chirality) in crystallized chiral polylactides through chirality transfer on different length scales. The molecular chirality and conformational chirality of enantiomeric chiral polylactides are identified from circular dichroism (CD) spectra and vibrational circular dichroism (VCD) spectra, respectively. The optical activity of molecular chirality from lactic acid is affected by the formation of a helical conformation because of the transfer of chirality via intramolecular chiral interaction. The conformational chirality of the chiral polylactides is determined from the signiture of split-type Cotton effect in the absorption bands of ester group (C=O stretching) in the VCD spectrum at which one-handed helical chain conformation of the chiral polylactide can be found, indicating the chirality transfer from molecular chirality to conformational chirality. Owing to the crystalline lamellar twisting resulting from imbalanced stresses of folding surfaces, banded spherulites can be found in crystallized chiral polylactides and the sense of the lamellar twisting can be determined using PLM. Significant induced VCD signals in the absorption bands of the C-O-C vibration appear in the crystallized chiral polylactides, and exclusive optical activity can be identified. On the basis of the VCD and POM results, a homochiral evolution from the helical polymer chain (conformational chirality) to the lamellar twisting in the banded spherulite (phase chirality) is suggested via intermolecular chiral interaction. Furthermore, the formation of stereocomplex from blending of enantiomeric chiral polylactides is examined. In contrast to the intrinsic chiral polylactides, no banded spherulites can be found in the chiral polylactide blends with stereocomplex formation, consisting to the morphologies observed by scanning electron microscope and transmission electron microscopy. On the basis of morphological results, no occurrence of lamellar twisting can be found in stereocomplex crystallites. Moreover, the spectra of the stereocomplex blends show VCD silence in both absorptions of C=O and C-O-C vibrations, suggesting the symmetric packing of chain conformations between L- and D-form sequences on the fold surface and the core of crystallites. As a result, we suggest that the formation of stereocomplex might affect the occurrence of imbalanced stresses, resulting in the symmetric conformation on fold surface and giving the releasing of imbalanced stresses.


    Herein, we aim to examine the forming mechanisms of banded spherulite (the presence of concentric rings or extinction bands under polarizes light microscope (PLM) observations) with exclusive optical activity (i.e., phase chirality) in crystallized chiral polylactides through chirality transfer on different length scales. The molecular chirality and conformational chirality of enantiomeric chiral polylactides are identified from circular dichroism (CD) spectra and vibrational circular dichroism (VCD) spectra, respectively. The optical activity of molecular chirality from lactic acid is affected by the formation of a helical conformation because of the transfer of chirality via intramolecular chiral interaction. The conformational chirality of the chiral polylactides is determined from the signiture of split-type Cotton effect in the absorption bands of ester group (C=O stretching) in the VCD spectrum at which one-handed helical chain conformation of the chiral polylactide can be found, indicating the chirality transfer from molecular chirality to conformational chirality. Owing to the crystalline lamellar twisting resulting from imbalanced stresses of folding surfaces, banded spherulites can be found in crystallized chiral polylactides and the sense of the lamellar twisting can be determined using PLM. Significant induced VCD signals in the absorption bands of the C-O-C vibration appear in the crystallized chiral polylactides, and exclusive optical activity can be identified. On the basis of the VCD and POM results, a homochiral evolution from the helical polymer chain (conformational chirality) to the lamellar twisting in the banded spherulite (phase chirality) is suggested via intermolecular chiral interaction. Furthermore, the formation of stereocomplex from blending of enantiomeric chiral polylactides is examined. In contrast to the intrinsic chiral polylactides, no banded spherulites can be found in the chiral polylactide blends with stereocomplex formation, consisting to the morphologies observed by scanning electron microscope and transmission electron microscopy. On the basis of morphological results, no occurrence of lamellar twisting can be found in stereocomplex crystallites. Moreover, the spectra of the stereocomplex blends show VCD silence in both absorptions of C=O and C-O-C vibrations, suggesting the symmetric packing of chain conformations between L- and D-form sequences on the fold surface and the core of crystallites. As a result, we suggest that the formation of stereocomplex might affect the occurrence of imbalanced stresses, resulting in the symmetric conformation on fold surface and giving the releasing of imbalanced stresses.

    Abstract…………………………………………………………………...I Contents………………………………………………………………....III List of Figures……………………………………………………..……VI Chapter 1 Introduction…………………………………………………1 1-1Chirality……………………………………………………………….1 1-2 Helical Conformation...........................................................................3 1-2.1 Helical persistent length and helical reversal..............................6 1-2.2 Majority rule versus sergeants and soldiers effect......................9 1-2.3 Helical inversion in polymer aggregation.................................11 1-3 Circular Dichroism.............................................................................14 1-4 Vibrational Circular Dichroism..........................................................17 1-5 Conjugated Coupling Rule and Exciton Chirality Method................18 1-6 CD and VCD Application for Studying the Chiral Molecular Self-assembly……………..………………………………………...21 1-7 Self-Assembly and Supramolecular Chemistry.................................26 1-8 Chiral Effect on Self-Assembly..........................................................35 1-9 Banded Spherulitic Morphologies......................................................43 1-10 Crystalline Behavior of Stereocomplex...........................................48 Chapter 2 Objectives..............................................................................52 Chapter 3 Experimental Details............................................................55 3-1 Materials.............................................................................................55 3-1.1 Synthesis of enatiomeric chiral polylactides………………….55 3-2 Preparation of Polymer Solution........................................................55 3-2.1 Preparation of polymer thin-film samples.................................56 3-3Characterization and Instruments.......................................................56 3-3.1 Circular dichroism spectroscopy (CD)......................................56 3-3.2 Vibrational circular dichroism spectroscopy (VCD).................56 3-3.3 Polarized light microscopy (PLM)............................................56 3-3.4 Differential Scanning Calorimetry (DSC).................................57 3-3.5 Small-angle X-ray (SAXS).......................................................57 3-3.6 Transmission Electron Microscopy (TEM)...............................57 3-3.7 Scanning Electron Microscopy (SEM).....................................58 Chapter 4 Results and Discussion.........................................................59 4.1 Intramolecular Chiral Interaction…………………………………...59 4-1.1 Molecular chirality examined by ECD…………………….…60 4-1.2 Conformational chirality examined by VCD………………....62 4-2 Intermolecular Chiral Interaction…………………………………...64 4-2.1 Intermolecular chiral interaction in solid state……………..…65 4-3 Crystalline Phases of PLLA and PDLA…………………………….68 4-3.1 Formation of banded spherulites……………………………...68 4-3.2 Thickness of lamellar twisting……………………………..…71 4-3.3 Handedness of banded spherulitic morphologies………..……74 4-3.4 Homochiral evolution………………………………………....76 4-4 Crystalline Morphologies of Stereocomplex in enantiomeric polylactides.........................................................................................79 4-4.1 Thermal behavior of stereocomplex………………………..…79 4-4.2 Crystalline morphologies of stereocomplex…………………..81 4-4.3 Chiral interaction of sterocomplex……………………………85 4-5 Peculiar Intermolecular Chiral Interaction for Polylactides in Solution...............................................................................................89 Chapter 5 Conclusions...........................................................................95 Chapter 6 Future Work..........................................................................97 Chapter 7 References.............................................................................99

    [1] http://en.wikipedia.org/wiki/Chirality_(chemistry).
    [2] Rodger, A.; Nordén, B. Circular dichroism and linear dichroism. Oxford University Pres., 2011.
    [3] Solomon, I. E. Inorganic electronic structure and spectroscopy. Wiley-Interscience., 2011.
    [4] Nakanishi, K.; Berova, N.; Woody, R. W. Circular Dicroism Principles and Applications.,1994.
    [5] http://boomeria.org/chemlectures/textass2/firstsemass.html
    [6] Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy. Exciton Coupling in Organic Stereochemistry. University Science Books, 1983.
    [7] Berova N, Nakanishi K, Woody RW. Circular Dichroism: Principles and Applications.Wiley-VCH, 2000.
    [8] Gawronski, J. Determination of absolute and relative configuration by chiroptical methods. In: Houben-Weyl, Methods of Organic Chemistry, 1995, 21, 499.
    [9] Fischbeck, A.; Bartke, N.; Humpf, H. U. Monatshefte fur Chemie, 2005, 136, 397.
    [10] Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539.
    [11] Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109, 6102.
    [12] Green, M. M.; Nolte, R. J. M.; Meijer, E.W. Materials-Chirality: Volume 24 of Topics in Stereochemisty. New Jersey: John Wiley & Sons, Inc. Press 2003.
    [13] Farina, M. Top Stereochem. 1987, 17, 1.
    [14 ]Okamoto, Y.; Nakano, T. Chem. Rev. 1994, 94, 349.
    [15] Wulff, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 21.
    [16] Pu, L. Acta. Polym. 1997, 48, 116.
    [17] Rowan, A. E.; Nolte, R. J. M. Angew. Chem., Int. Ed. 1998, 37, 63.
    [18] Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013.
    [19] Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039.
    [20] Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 268, 1860.
    [21] Maeda, K.; Yashima, E. Top. Curr. Chem. 2006, 265, 47.
    [22] Yashima, E.; Maeda, K. In Foldamers: Structure, Properties, and Applications; Hecht, S., Huc, I., Eds.; Wiley-VCH: Weinheim, 2007.
    [23] Sierra, T. In Chirality at Nanoscale; Amabilino, D., Ed.; Wiley.
    [24] Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
    [25] Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893.
    [26] Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1996, 118, 7529.
    [27] Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J. M. Nature 2000, 407, 720.
    [28] Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138.
    [29] Jha, S. K.; Cheon, K. S.; Green, M. M.; Selinger, J. V. J. Am. Chem. Soc. 1999, 121, 1665.
    [30] Gu, H.; Nakamura, Y.; Sato, T.; Teramoto, A.; Green, M. M.; Andreola, C.; Peterson, N. C.; Lifson, S. Macromolecules 1995, 28, 1016
    [31] Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138.
    [32] Jha, S. K.; Cheon, K. S.; Green, M. M.; Selinger, J. V. J. Am. Chem. Soc. 1999, 121, 1665.
    [33] Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J. Am. Chem. Soc. 1989, 111, 8850.
    [34] Selinger, J. V.; Selinger, R. L. B. Phys. Rev. Lett. 1996, 76, 58.
    [35] Selinger, J. V.; Selinger, R. L. B. Macromolecules 1998, 31, 2488.
    [36] Tanatani,A.; Yokozawa,T. et al. J. Am. Chem. Soc. 2005, 127, 8553.
    [37] Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O’Leary, D. J.; Willson, G. J. Am. Chem. Soc. 1989, 111, 6452.
    [38] Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H. P. J. Am. Chem. Soc. 1995, 117, 4181.
    [38] Lehn, J. M. Science 1985, 227, 849
    [39] Whitesides, G. M.; Grzybowski, B. Science, 2002, 295, 2418.
    [40] Whitesides, G. M.; Boncheva, M. Proc. Nat.l Acad. Sci. USA 2002, 99, 4769.
    [41] Petsko, G. A.; Ringe, D. Protein Structure and Function. London: New Science Press Ltd, 2004. pp. 2-46.
    [42] Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
    [43] Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    [44] Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
    [45] Shen, H.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9473.
    [46] Discher, D. E.; Eisenberg, A. Science 2002, 297, 967.
    [47] Spada, G.. P.; Gottarelli, G.; Lena, S.; Masiero, S.; Pieraccini, S. Chirality 2008, 20, 471.
    [48] Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
    [49] Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427.
    [50] Malashkevich, V. N.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science 1996, 274, 761.
    [51] Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J. Am. Chem. Soc. 2005, 127, 7992.
    [52] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
    [53] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Harris, F. W. Phys. Rev. Lett. 1999, 83, 4558.
    [54] Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z. Calhoun, B. H.; Harris, F. W.; Chien, L. C.; Lotz, B. J. Am. Chem. Soc. 2001, 123, 2462.
    [55] Maillard, D.; Prud’homme, R. E. Macromolecules 2006, 39, 4272.
    [56] Maillard, D.; Prud’homme, R. E. Macromolecules 2008, 41, 1705.
    [57] Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
    [58] Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am.
    Chem. Soc. 2002, 124, 12761.
    [59] Schenning, A. P. H. J.; Jonkheijm, P.; Meijer, E.; Hierarchcal, E. W.
    J. Am. Chem. Soc. 2001, 123, 409.
    [60] Jonkheijm, P.; Van-der-Schoot P.; Schenning, A. P. H. J.; Meijer, E. W. Science, 2006, 313, 80.
    [61] Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W. J. Mo.l Struct. 2000, 521, 285.
    [62] Lermo, E. R.; Lagenveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W. Chem Commun, 1999, 791.
    [63] Measey, T. J.; Stenner, R. S. J. Am. Chem. Soc. 1989, 111, 6452.
    [64] Nozomu, S.; Michiya, F.; Ruth, K. K.; Julian, R. K. J. Am. Chem. Soc. 2013, 135, 13073.
    [65] Ohira, A.; Okoshi, K.; Fujiki, M.; Kunitake, M.; Naito, M.; Hagihara, T. Adv. Mater. 2004, 16, 1645.
    [66] Peng, W.; Motonaga, M.; Koe, J. R. J. Am. Chem. Soc. 2004, 126, 13822.
    [67] Goto, H.; Okamoto, Y.; Yashima, E. Macromolecules 2002, 35, 4590.
    [68] Satrijo, A.; Swager, T. M. Macromolecules 2005, 38, 4054.
    [69] Satrijo, A.; Meskers, S. C. J.; Swager, T. M. J. Am. Chem. Soc. 2006, 128, 9030.
    [70] Wu, L.; Sato, T. Kobunshi Ronbunshu 2006, 63, 505.
    [71] Straley, J. P. Phys. Rev. 1976, 14, 1835.
    [72] Harris, A. B.; Kamien, R. D.; Lubensky, T. C. Rev. Mod. Phys. 1999, 71, 1745.
    [73] Gottarelli, G.; Spada, G. P. In Circular Dichroism, 2nd ed.; Berova, N.; Nakanishi, K., Woody, R., Eds.; Wiley-VCH: New York, NY, 2000; Chapter 19.
    [74] Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257.
    [75] Harada, N.; Chen, S. M. L.; Nakanishi, K. J. Am. Chem. Soc. 1975, 97, 5345.
    [76] Berova, N.; Nakanishi, K. In Circular Dichroism, 2nd ed.; Berova, N.; Nakanishi, K., Woody, R., Eds.; Wiley-VCH: New York, NY, 2000; Chapter 12.
    [77] Berova, N.; Bari, L. D.; Pescitelli, G. Chem. Soc. Rev. 2007, 36,914.
    [78] Polavarapu, P. L. Chem. Rec. 2007, 7, 125.
    [79] He, Y.; Wang, B.; Dukor, R. K.; Nafie, L. A. Appl. Spectrosc. 2011, 65, 699.
    [80] Urbanová, M.; Setnicka, V.; Devlin, F. J.; Stephens, P. J. J. Am.
    Chem. Soc. 2005, 127, 6700.
    [81] Tang, H. Z.; Novak, B. M.; He, J.; Polavarapu, P. L. Angew. Chem., Int. Ed. 2005, 44, 7298.
    [82] Brotin, T.; Cavagnat, G.; Dutasta, J. P.; Buffeteau, T. J. Am. Chem. Soc. 2006, 128, 5533.
    [83] Vokácová, Z.; Trantírek, L.; Sychrovsky, V. J. Phys. Chem. A. 2010, 114, 10202.
    [84] Huang, R.; Kubelka, J.; Barber, W. A.; Silva, R. A. G. D.; Decatur, S. M.; Keiderling, T. A. J. Am. Chem. Soc. 2004, 126, 2346.
    [85] Freedman, T. B.; Nafie, L. A. Top. Stereochem. 1987, 17, 113.
    [86] Abbate, S.; Gangemi, R.; Longhi, G. J. Chem. Phys. 2002, 117,
    7575.
    [87] Barnett, C. J.; Drake, A. F.; Kuroda, R.; Mason, S. F. Mol. Phys. 1980, 41, 455.
    [88] Tohru, T. ; Kenji, M. J. Am. Chem. Soc. 2012, 134, 3695.
    [89] Sawyer, L. C.; Grubb, D. T.; Meyers, G. F. Polymer Microscopy, 3rd ed., Springer, New York 2008, pp. 1-25 .
    [90] Alamo, R. G. In Molecular Characterization and Analysis of Polymers, 1st ed., Elsevier , Amsterdam 2008, pp. 255 .
    [91] Bassett, D. C. Principles of Polymer Morphology, Cambridge University Press, New York 1981, pp. 16-36.
    [92] Keith, H. D.; Padden, F. J.; Russell, T. P. Macromolecules 1989, 22, 666.
    [93] Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000, 33, 7529.
    [94] Xu, J.; Guo, B. H.; Zhang, Z. M.; Zhou, J. J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G. Q.; Schultz, J. M. Macromolecules 2004, 37, 4118.
    [95] Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Russell, T. P.; Lee, J. H.; Jho, J. Y. Macromolecules 2005, 38, 104.
    [96] Keller, A. J. Polym. Sci. 1955, 17, 351.
    [97] Keith, H. D.; Padden, F. J. J. Polym. Sci. 1959, 39, 101.
    [98] Keith, H. D.; Padden, F. J. J. Polym. Sci. 1959, 39, 123.
    [99] Price, F. P. J. Polym. Sci. 1959, 39, 139.
    [100] Keller, A. J. Polym. Sci. 1959, 39, 151.
    [101] Fujiwara, Y. J. Appl. Polym. Sci. 1960, 4, 10.
    [102] Ho, R. M.; Chao, C. C. Macromolecules 2000, 33, 7529.
    [103] Watanabe, K.; Iida, H.; Akagi, K. Adv. Mater. 2012, 24, 6451.
    [104] Tsuji, H. In Research Advances in Macromolecules, Grobal Research Network, Trivandrum, India, Vol. 1, 2000, pp. 25–48.
    [105] Tsuji, H. Biomaterials 2003, 24, 537.
    [106] Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 5651.
    [107] Tsuji, H.; Hyon, S. H.; Ikada, Y. Macromolecules 1991, 24, 5657.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE