簡易檢索 / 詳目顯示

研究生: 郭修維
Kuo, Hsiu-Wei
論文名稱: 具低噪聲讀取電路之CMOS電容式紅外線感測器開發
Development of CMOS Capacitive Infrared Sensors with Low-Noise Readout Circuits
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 吳添立
Wu, Tian-Li
黃智方
Huang, Chih-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 85
中文關鍵詞: CMOS紅外線感測雙層材料三層材料電容式
外文關鍵詞: CMOS, IR sensors, bimorph, trimorph, capacitive
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用標準2P4M 0.35 µm CMOS製程開發兩種 16 × 16 紅外線焦平面熱感測陣列晶片。感測元件結構以雙層及三層材料之平板式電容及懸臂樑來設計。感測機制主要藉由結構中不同材料之間熱膨脹係數差異,將吸收紅外線熱輻射所產生之溫度變化轉換為電容值變化。本研究之優勢在於無須透過額外材料沉積製程,相較於現有其他常見紅外線熱感測器,可大幅降低製作成本。實驗結果顯示所開發之感測陣列具備優異的響應度及偵測度特性,提升了電容式雙層材料懸臂樑應用於感熱元件之可行性。
    本研究讀取電路採用共汲極及共源極之設計,將感測電容上極板受熱輻射所產生之形變訊號放大並轉換為輸出電壓。在元件結構方面,透過金屬濕蝕刻及反應離子蝕刻將感熱元件結構完整釋放,使感測電容值得以隨上極板溫度變化而改變。量測結果顯示,本感測器之熱時間常數為5.16 ms,響應度與雜訊等效功率(NEP)分別可達0.064×106 V/W以及21 pW/Hz1/2。


    This study develops two 16 × 16 infrared focal plane array thermal sensor chips using a standard 2P4M 0.35 µm CMOS process. The sensing elements incorporate dual-layer and triple-layer materials in parallel-plate capacitive and cantilever beam structures. The sensing mechanism mainly converts temperature changes from absorbed infrared radiation into capacitance variations by utilizing the differential thermal expansion coefficients between different materials in the structure. The advantage of this research lies in eliminating the need for additional material deposition processes, significantly reducing manufacturing costs compared to other conventional infrared thermal sensors. Experimental results demonstrate excellent responsivity and detectivity characteristics, enhancing the feasibility of applying capacitive dual-layer material cantilevers as thermal sensing elements.
    This research employs both common-drain and common-source designs in the readout circuit to amplify and convert the deformation signals generated by the upper plate of the sensing capacitor under thermal radiation into output voltage. Regarding the device structure, the thermal sensing elements are fully released through metal wet etching and Reactive Ion Etching (RIE), allowing the sensing capacitance to vary with temperature changes of the upper plate. Measurement results indicate that the sensor achieves a thermal time constant of 5.16 ms, and responsivity and Noise Equivalent Power (NEP) of 6.4 × 10⁴ V/W and 21 pW/Hz1/2, respectively.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 (一) 紅外線熱感測簡介 3 (二) 感測機制簡介 4 1-2 文獻回顧 5 (一) 熱電式感測器 5 (二) 熱釋電式感測器 6 (三) 熱阻式感測器 7 (四) 電晶體式感測器 7 (五) 電容式感測器 8 1-3 研究動機 9 第二章 電容式雙層材料懸臂樑熱感測原理 11 2-1 感測原理 11 (一) 熱輻射原理 11 (二) 感測原理 12 2-2 規格參數 14 (一) 響應度 14 (二) 雜訊等校溫差 14 (三) 電容溫度係數 15 (四) 偵測度 15 (五) 熱時間常數 16 第三章 設計與模擬 18 3-1 元件設計 18 (一) 感測電容參數設計 18 (二) 結構與佈局設計 20 (三) 後製程步驟 25 3-2 元件模擬 36 (一) 溫度感測模擬 36 (二) 結構振頻模擬 38 (三) 熱時間常數模擬 39 (四) 材料吸收率模擬 40 3-3 電路設計 41 (一) 整體電路架構 41 (二) 讀取電路 44 (三) 取樣保持電路 46 (四) 移位暫存器 47 (五) 邏輯電壓轉換器 49 (六) 雜訊考量 50 3-4 電路模擬 52 (一) 感測度模擬 52 (二) 雜訊模擬 53 第四章 實驗結果與分析 55 4-1 結構特性量測 55 (一) 光學顯微鏡量測 55 (二) 白光干涉儀量測 57 4-2 電路量測 59 (一) 量測設備架構 59 (二) 結構振頻量測 62 (三) 溫度變化量測 64 (四) 紅外線量測 67 (五) 熱時間常數量測 71 (六) 壓力變化量測 74 (七) 雜訊量測 75 第五章 結論與未來工作 79 5-1 研究結果討論 79 5-2 未來工作 81 (一) 元件改良 81 (二) 後製程改良 81 參考文獻 82

    [1] S. Lee, S. Park, and D. Cho, "The surface/bulk micromachining (SBM) process: a new method for fabricating released MEMS in single crystal silicon," Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 409-416, 1999.
    [2] J. W. Judy, "Microelectromechanical systems (MEMS): fabrication, design and applications," Smart Materials and Structures, vol. 10, no. 6, pp. 1115, 2001.
    [3] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proceedings of the IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
    [4] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, "The resonant gate transistor," IEEE Transactions on Electron Devices, vol. 14, no. 3, pp. 117- 133, 1967.
    [5] K. E. Petersen, "Silicon as a mechanical material," Proceedings of the IEEE, vol. 70, no. 5, pp. 420-457, 1982.
    [6] N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proceedings of the IEEE, vol. 86, no. 8, pp. 1640-1659, 1998.
    [7] M. Kraft, "Micromachined inertial sensors: The state-of-the-art and a look into the future," Measurement and Control, vol. 33, no. 6, pp. 164-168, 2000.
    [8] D. R. Frutiger, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, "Small, fast, and under control: wireless resonant magnetic micro-agents," The International Journal of Robotics Research, vol. 29, no. 5, pp. 613-636, 2009.
    [9] P. R. Scheeper, A. G. H. Van der Donk, W. Olthuis, and P. Bergveld, "A review of silicon microphones," Sensors and Actuators A: Physical, vol. 44, no. 1, pp. 1-11, 1994.
    [10] A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, "Review: Semiconductor piezoresistance for microsystems," Proceedings of the IEEE, vol. 97, no. 3, pp. 513-552, 2009.
    [11] P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, R. J. Vetter, and D. R. Kipke, "Flexible polyimide-based intracortical electrode arrays with bioactive capability," IEEE Trans. Biomed. Eng., vol. 48, no. 3, pp. 361-371, 2001.
    [12] A. Rogalski, "Recent progress in infrared detector technologies," Infrared Physics & Technology, vol. 54, no. 3, pp. 136-154, 2011.
    [13] A. Rogalski, "Infrared detectors: status and trends," Progress in Quantum Electronics, vol. 27, no. 2-3, pp. 59-210, 2003.
    [14] E. F. J. Ring and K. Ammer, "Infrared thermal imaging in medicine," Physiological Measurement, vol. 33, no. 3, pp. R33, 2012.
    [15] R. Gade and T. B. Moeslund, "Thermal cameras and applications: a survey," Machine Vision and Applications, vol. 25, no. 1, pp. 245-262, 2014.
    [16] A. Rogalski, "History of infrared detectors," Opto-Electronics Review, vol. 20, no. 3, pp. 279-308, 2012.
    [17] A. Rogalski, "Infrared detectors: an overview," Infrared Physics & Technology, vol. 43, no. 3-5, pp. 187-210, 2002.
    [18] R. A. Wood, "Uncooled thermal imaging with monolithic silicon focal planes," Infrared Technology XIX, vol. 2020, pp. 32-39, 1993.
    [19] D. Balageas, X. Maldague, D. Burleigh, V. P. Vavilov, B. Oswald-Tranta, J.-M. Roche, C. Pradere, and G. M. Carlomagno, "Thermal (IR) and Other NDT Techniques for Improved Material Inspection," Journal of Nondestructive Evaluation, vol. 35, no. 1, p. 18, Jan. 2016.
    [20] A. Singh, P. Aggarwal and R. Arora, "IoT based waste collection system using infrared sensors," in 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 505-509, 2016.
    [21] M. Gochoo et al., "Novel IoT-Based Privacy-Preserving Yoga Posture Recognition System Using Low-Resolution Infrared Sensors and Deep Learning," in IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7192-7200, 2019.
    [22] M. Bertozzi, A. Broggi, A. Fascioli, T. Graf and M.-M. Meinecke, "Pedestrian detection for driver assistance using multiresolution infrared vision," in IEEE Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1666-1678, 2004.
    [23] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, "Three decades of driver assistance systems: Review and future perspectives," IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 6-22, 2014.
    [24] C. Meola and G. M. Carlomagno, "Recent advances in the use of infrared thermography," Measurement Science and Technology, vol. 15, no. 9, pp. R27, 2004.
    [25] G. R. Lahiji and K. D. Wise, "A monolithic thermopile detector fabricated using integrated-circuit technology," 1980 International Electron Devices Meeting, pp. 676-679, 1980.
    [26] M. C. Foote, E. W. Jones, and T. Caillat, "Uncooled thermopile infrared detector linear arrays with detectivity greater than 109 cmHz1/2/W," IEEE Transactions on Electron Devices, vol. 45, no. 9, pp. 1896-1902, 1998.
    [27] T. Kanno, M. Saga, S. Matsumoto, M. Uchida, N. Tsukamoto, A. Tanaka, S. Itoh, A. Nakazato, T. Endoh, S. Tohyama, Y. Yamamoto, S. Murashima, N. Fujimoto, and N. Teranishi, "Uncooled infrared focal plane array having 128 x 128 thermopile detector elements," Infrared Technology XX, vol. 2269, pp. 473-480, 1994.
    [28] F. Haenschke et al., "A new high detectivity room temperature linear thermopile array with a D* greater than 2×10^9 cmHz^1/2/W based on organic membranes," Microsyst Technol, vol. 19, no. 12, pp. 1927-1933, 2013.
    [29] M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Forster, P. Muralt, N. Setter, and P. Ryser, "Pyroelectric thin-film sensor array," Sensors and Actuators A: Physical, vol. 60, no. 1-3, pp. 147-153, 1997.
    [30] P. Zappi, E. Farella, and L. Benini, "Tracking Motion Direction and Distance With Pyroelectric IR Sensors," IEEE Sensors Journal, vol. 10, no. 9, pp. 1486-1494, 2010.
    [31] T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A. R. M. Foisal, T. N. Viet, C.-D. Tran, Y. Zhu, N.-T. Nguyen, and D. V. Dao, "Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications," Journal of Microelectromechanical Systems, vol. 26, no. 5, pp. 966-986, 2017.
    [32] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, "Low-cost uncooled infrared detectors in CMOS process," Sensors and Actuators A-Physical, vol. 109, no. 1-2, pp. 102-113, 2003.
    [33] C. M. Ippolito, A. L. Malfa, and G. Bruno, "TMOS-based contactless temperature sensor for low-power applications," 2024 39th Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1-4, 2024.
    [34] E. Moisello, M. E. Castagna, A. L. Malfa, G. Bruno, P. Malcovati and E. Bonizzoni, "Reference Temperature Sensor for TMOS-Based Thermal Detectors," in IEEE Access, vol. 11, pp. 96594-96602, 2023,
    [35] T. Blank et al., "Non-Imaging Digital CMOS-SOI-MEMS Uncooled Passive Infra-Red Sensing Systems," IEEE Sensors Journal, vol. 21, no. 3, pp. 3660-3668, 2021.
    [36] S. R. Hunter, G. Maurer, L. Jiang, and G. Simelgor, "High sensitivity uncooled microcantilever infrared imaging arrays," Proceedings of SPIE, May 2006.
    [37] S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, "High-sensitivity uncooled microcantilever infrared imaging arrays," Proc. SPIE 5074, Infrared Technology and Applications XXIX, pp. 497576, 2003.
    [38] I. W. Kwon, J. E. Kim, C. H. Hwang, Y. S. Lee, and H. C. Lee, "Design and fabrication of a capacitive infrared detector with a floating electrode and thermally isolatable bimorph legs, " Sensors and Actuators A: Physical, vol. 147, no. 2, pp. 391-400, 2008.
    [39] L. Gitelman, S. Stolyarova, S. Bar-Lev, Z. Gutman, Y. Ochana, and Y. Nemirovsky, "CMOS-SOI-MEMS Transistor for Uncooled IR Imaging," IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1935–1942, Sep. 2009.

    QR CODE