簡易檢索 / 詳目顯示

研究生: 江俊毅
Chiang, Jiun-Yi
論文名稱: 晶片群集相互資訊在多重時脈測試之應用
Chip Clustering with Mutual Information on Multiple Clock Tests and its Application to Yield Tuning
指導教授: 劉靖家
Liou, Jing-Jia
口試委員: 王行健
Wang, Sying-Jyan
陳竹一
Chen, Zu-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 49
中文關鍵詞: 超大積體電路測試製程變異
外文關鍵詞: VLSI, Testing, Process variation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著互補式金屬氧化物半導體製程技術進入深次微米時代,製程變異以及生
    產過程缺陷嚴重得影響著產品的良率,截至目前為止,並沒有一套有效率的方法
    去輔助設計者分析製程變異所帶來的影響。製程變異主要分成兩種,隨機性製程
    變異以及系統性製程變異,其中系統性製程變異對於光罩、蝕刻與佈局有很高的
    相依性,我們針對系統性變異來加以分析。
    在本篇論文中,我們提出一套多重時脈測試的方法,先挑取受到系統性製程
    變異影響的路徑,在利用多重測試時脈加以區分晶片,再使用分群的方法,將受
    到相似製程變異的晶片分群再一起,並應用了SAT-based 的方法找到相對應調整
    過後的電壓值,並建立分類器,去修復受到製程變異影響造成無法達到標準的晶
    片,由於SAT-based 的方法需要更大量的測試時脈,所以使用建立分類器的方法
    只需要2~3 個測試時脈可以大量節省測試成本(約省下原來的90%)並同時達到接
    近SAT-based 的良率。
    利用調整電壓來加速晶片已達到修復目的,勢必會造成電量上的消耗,
    但經過我們的實驗結果顯示,只要利用2 到3 個測試時脈,就可以達到88%~99%
    的良率,而且電量消耗只多出4%~25%,相較於最差的情況(所有列電壓都拉高)
    需額外增加50%電量,我們的方法可以找到較低的電量消耗就可以達到很高的良
    率。


    1 Introduction 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Preview of our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Background 14 2.1 Process variations and sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Tunable circuit design and tuning algorithm . . . . . . . . . . . . . . . . . . . . . 15 2.3 Test path selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Building the classification model using SVM . . . . . . . . . . . . . . . . . . . . 20 2.5 MBSAS clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Proposed Methods 25 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Multiple test clocks selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Flow of classifier-based yield tuning . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Clustering-based voltage merging . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.6 Feature reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Experimental Result 36 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.1 Process Variation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.2 Test cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.3 Process variation experiment . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Test cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.2 Multiple test clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 Different type variation model . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Conclusions and Future Work 46 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    [1] M. Choi and L. Milor, “Impact on circuit performance of deterministic within-die variation
    in nanoscale semiconductor manufacturing,” IEEE Transactions on Computer-Aided Design
    of Integrated Circuits and Systems, 2006.
    [2] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations
    on the maximum clock frequency distribution for gigascale integration,” IEEE Journal
    of Solid-State Circuits, 2002.
    [3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variations
    and impact on circuits and microarchitecture,” ACM/IEEE Design Automation Conference,
    2003.
    [4] H. Aikawa, T. Sanuki, A. Sakata, E. Morifuji, H. Yoshimura, T. Asami, H. Otani, and H. Oyamatsu,
    “Compact Model for Layout Dependent Variability,” in International Electron Devices
    Meeting, 2009.
    [5] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De, “Adaptive
    body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor
    frequency and leakage,” IEEE Journal of Solid-State Circuits, 2002.
    [6] J. Gregg and T. Chen, “Post Silicon Power/Performance Optimization in the Presence of
    Process Variations Using Individual Well-Adaptive Body Biasing,” IEEE Transactions on
    Very Large Scale Integration (VLSI) Systems, 2007.
    [7] J. Gregg and T. chen, “Optimization of individual well adaptive body biasing (IWABB) using
    a multiple objective evolutionary algorithm,” International Symposium on Quality of Electronic
    Design, 2005.
    [8] T. Chen and J. Gregg, “A low cost individual-well adaptive body bias (IWABB) scheme
    for leakage power reduction and performance enhancement in the presence of intra-die variations,”
    Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,
    2004.
    [9] M. Elgebaly and M. Sachdev, “Variation-Aware Adaptive Voltage Scaling System,” IEEE
    Transactions on Very Large Scale Integration (VLSI) Systems, 2007.
    [10] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Elsevier Science, 2008, sec. 12.4.
    [11] J.-H. Kuo, T.-S. Hsu, and J.-J. Liou, “Test cost reduction for performance yield recovery by
    classification of multiple-clock test data,” in Proc. ATS’12, 2012, pp. 320–325.
    [12] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001, software
    available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
    [13] Y.-Y. Chen and J.-J. Liou, “A non-intrusive and accurate inspection method for segment delay
    variabilities,” Proceedings of IEEE Asian Test Symposium, 2009.
    [14] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and R. Panda,
    “Statistical delay computation considering spatial correlations,” Proceedings of Asia & South
    Pacific Design Automation Conference, 2003.
    [15] M. Chun-Chia Chen, “Design Methodology and Simulation Framework for Variation-Aware
    Cell-based Tunable Circuits,” 2008.
    [16] J.-J. Liou, Y.-Y. Chen, C.-C. Chen, C.-Y. Chien, and K.-L. Wu, “Diagnosis-assisted Supply
    Voltage Configuration to Increase Performance Yield of Cell-Based Designs,” Proceedings
    of Asia & South Pacific Design Automation Conference, 2011.
    [17] L.-T. Wang, C. E. Stroud, and N. A. Touba, System-on-Chip Test Architectures: Nanometer
    Design for Testability. Morgan Kaufmann, 2007.
    [18] J. jia Liou, A. Krstic, L.-C. Wang, and K. ting Cheng, “False-path-aware statistical timing
    analysis and efficient path selection for delay testing and timing validation,” Proceedings of
    Design Automation Conference, 2002.
    [19] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,”
    IEEE Transactions on Neural Networks, 2002.
    [20] B. Brumen, T.Welzer, I. Rozman, M. Holbl, and H. Jaakkola, “Convergence detection criteria
    for classification based on final error rate,” IEEE International Conference on Computational
    Cybernetics, 2005.
    [21] B. Brumen, M. B. Juriˇc, T. Welzer, I. Rozman, H. Jaakkola, and A. Papadopoulos, “Assessment
    of classification models with small amounts of data,” Informatica, 2007.
    [22] B. Brumen, I. Golob, H. Jaakkola, T. Welzer, and I. Rozman, “Early assessment of classification
    performance,” in Proceedings of the second workshop on Australasian information
    security, Data Mining and Web Intelligence, and Software Internationalisation - Volume 32,
    2004.
    [23] C. D. Manning, P. Raghavan, and H. Sch¨utze, Introduction to information retrieval. Cambridge
    University Press Cambridge, 2008, vol. 1, sec. 16.3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE