研究生: |
張完如 Chang, Wan-Ju |
---|---|
論文名稱: |
探討電刺激腹側被蓋區是否影響視丘下核-深層腦刺激抑制單側帕金森氏模式鼠運動皮質區beta-oscillations Studying whether electrically stimulating VTA affects the inhibition of beta-oscillations in the motor cortex by STN-DBS in hemi-Parkinsonian rats |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
葉世榮
Yeh, Shih-Rung 周韻家 Chou, Yun-Chia |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | VTA電刺激 、深層腦刺激 、單側帕金森氏模式鼠 、帕金森氏症 |
外文關鍵詞: | VTA-stimulation, STN-DBS, beta-oscillations, Parkinson's disease |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症 (Parkinson’s disease)是一種神經退化性疾病,因大腦黑質區多巴胺神經細胞大量退化,進而使多巴胺分泌減少,而影響到和運動功能相關的基底神經核的調控,造成患者出現運動障礙。高頻深層腦刺激(deep brain stimulation, DBS)主要運用於治療重度帕金森氏患者,可以有效的抑制腦部初級運動皮質(primary motor cortex, M1)不正常的神經電生理活性 (beta oscillation),同時也明顯的改善患者運動行為方面症狀。許多研究指出在STN-DBS是透過逆向方向經由超直接路徑 (hyperdirect pathway)傳遞電生理訊號到運動皮質,進而影響運動皮質的神經訊號。經由我們先前研究指出,帕金森氏模式鼠不管在受損側或完整側,經由STN-DBS刺激後會在M1的第5b層引發細胞大量表現c-fos(蛋白質訊號),而在M1內給予dopamine受器的抑制劑則會抑制這些細胞中的c-fos蛋白表現。這些結果顯示出STN-DBS活化皮質運動區細胞的過程除了透過逆向路徑的方式外,可能還牽涉到其他的機制參與,例如活化dopamine受器等。
腹側背蓋區(ventral tegmental area, VTA)同樣也是重要的多巴胺神經來源,經由中腦皮質路徑 (mesocortical pathway)會投射到大腦皮質運動區。臨床發現在帕金森氏症患者腦部, VTA多巴胺神經會受到影響,再加上VTA與STN位置相近以及STN的投射,推測在STN-DBS時,可能間接影響VTA,使多巴胺敏感的運動皮質接收到多巴胺活化,進一步調控皮質功能。
因此本篇想探討VTA是否會藉由投射的中腦皮質路徑參與STN-DBS對運動皮質異常beta震盪的抑制。在實驗的第一個部分,我們首先對由6-OHDA建立的帕金森氏模式鼠是否在VTA同樣會出現多巴胺神經受損的情形進行初步分析。藉由tyrosine hydroxylase (TH)免疫組織染色標定VTA區域中的多巴胺神經,結果顯示以6-OHDA所建立的帕金森氏模式鼠VTA多巴胺神經確實受到破壞。進一步探討STN-DBS對M1第5b層異常beta震盪的抑制效果是否會間接透過VTA的中腦皮質路徑而產生影響。在本實驗第二個部分,我們藉由記錄LFP (local field potential)的方法,觀察VTA刺激對STN-DBS抑制M1第5b層異常beta震盪的影響。藉由FFT(fast Fourier transform)分析STN與VTA共同刺激以及VTA單獨刺激下beta震盪的能量強度,分析結果顯示搭配VTA的共同刺激與STN單獨刺激對beta的影響並沒有顯著的差異,在VTA的單獨刺激經分析後同樣沒有顯著的差異。經我們實驗結果發現,不管是與STN搭配的共同刺激以及VTA的單獨刺激皆對M1第5b層出現的異常beta震盪沒有顯著的影響。
Parkinson’s disease is one of the most common neurodegeneration. PD patients usually experience motor symptoms associated with pathological losses of the dopaminergic neurons in substantia nigra (SN). SNc dopaminergic neuron degeneration break the balance of basal ganglia system which plays important functions in controlling movements. High frequency deep brain stimulation (DBS) is mainly used in treating the movement abnormalities of severe Parkinson's patients. STN can also effectively inhibit the abnormal neurophysiological activity (beta oscillation) in primary motor cortex (M1) observed in PD patients and animal models of PD. Earlier studies have indicated that STN-DBS may send antidromic activities to the motor cortex via the hyperdirect pathway, thereby affecting the physiological signals in M1 neural circuits. In an earlier study of our laboratory, STN-DBS has been found to induce M1 layer 5b neurons to express intensely c-Fos protein (giant c-Fos) in hemi-Parkinsonian rats. The intense c-Fos expression is these motor cortex neurons could be blocked by local application of dopamine receptor antagonist in M1. This observation suggests that STN-DBS activates motor cortex not only through antidromic pathway, but DBS also induce dopamine receptor activation in the motor cortex.
In addition to substantial nigra pars compacta, ventral tegmental area (VTA) is also an important source of dopamine of motor cortex via the mesocortical pathway. Clinically, loses of dopaminergic neurons in VTA area have also been reported. The VTA resides near STN, and VTA receive STN projection. Therefore, we speculate that STN-DBS may stimulate VTA dopaminergic neurons and result in releave of dopamine in the motor cortex.
The aim of my thesis is to investigate whether VTA mesocortical pathway is involved in the inhibition M1 abnormal beta-oscillation by STN-DBS. First, I confirmed that the dompaminergic neurons in theVTA was depleted by 6-OHDA injection in hemi-Parkinsonian rats. My quantitative analyses by tyrosine hydroxylase (TH) staining indicated that in the VTA, DA neurons in the lesioned side were reduced to ~25% of that in the intact side. I further investigated whether the STN-DBS inducedinhibition of the abnormal beta-oscillation in M1 layer 5b by directly stimulating the VTA. The results indicate that direct sitmulation of VTA did not affect the beta-oscillations recorded in the motor cortex of hemi-Parkinsonian rats. Coupling VTA stimulation with STN-DBS did not affect the STN-DBS-induced inhibition of beta-oscillations recorded in the motor cortex, either. However, it remains unclear if direct stimulation of VTA affects the STN-DBS effects on the behavioral abnormalities associated with PD.
Alberico, S.L., Cassell, M.D., and Narayanan, N.S. (2015). The Vulnerable Ventral Tegmental Area in Parkinson's Disease. Basal Ganglia 5, 51-55.
Anderson, K.E. (2004). Behavioral disturbances in Parkinson's disease. Dialogues Clin Neurosci 6, 323-332.
Baker, S.N. (2007). Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17, 649-655.
Barbeau, A. (1969). L-dopa therapy in Parkinson's disease: a critical review of nine years' experience. Can Med Assoc J 101, 59-68.
Brown, P., and Williams, D. (2005). Basal ganglia local field potential activity: Character and functional significance in the human. Clin Neurophysiol 116, 2510-2519.
Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17, 1022-1030.
Dejean, C., Hyland, B., and Arbuthnott, G. (2009). Cortical Effects of Subthalamic Stimulation Correlate with Behavioral Recovery from Dopamine Antagonist Induced Akinesia. Cereb Cortex 19, 1055-1063.
Finlay, C.J., Duty, S., and Vernon, A.C. (2014). Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 5, 95.
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9, 474-480.
Guo, L., Xiong, H., Kim, J.I., Wu, Y.W., Lalchandani, R.R., Cui, Y., Shu, Y., Xu, T., and Ding, J.B. (2015). Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nat Neurosci 18, 1299-1309.
Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci 30, 357-364.
Hauser, R.A., McDermott, M.P., and Messing, S. (2006). Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 63, 1756-1760.
Herzog, J., Fietzek, U., Hamel, W., Morsnowski, A., Steigerwald, F., Schrader, B., Weinert, D., Pfister, G., Muller, D., Mehdorn, H.M., et al. (2004). Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Movement Disord 19, 1050-1054.
Hikosaka, O. (2008). [Decision-making and learning by cortico-basal ganglia network]. Brain Nerve 60, 799-813.
Hosp, J.A., and Luft, A.R. (2013). Dopaminergic meso-cortical projections to m1: role in motor learning and motor cortex plasticity. Front Neurol 4, 145.
Hosp, J.A., Pekanovic, A., Rioult-Pedotti, M.S., and Luft, A.R. (2011). Dopaminergic Projections from Midbrain to Primary Motor Cortex Mediate Motor Skill Learning. J Neurosci 31, 2481-2487.
Ikemoto, S., and Bonci, A. (2014). Neurocircuitry of drug reward. Neuropharmacology 76 Pt B, 329-341.
Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79, 368-376.
Kim, S.W., Jang, Y.J., Chang, J.W., and Hwang, O. (2003). Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an in vivo model relevant to Parkinson's disease. Neurobiol Dis 13, 167-176.
Kuhn, A.A., Kupsch, A., Schneider, G.H., and Brown, P. (2006). Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci 23, 1956-1960.
Kunori, N., Kajiwara, R., and Takashima, I. (2014). Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation. J Neurosci 34, 8894-8903.
Kunori, N., Kajiwara, R., and Takashima, I. (2016). The ventral tegmental area modulates intracortical microstimulation (ICMS)-evoked M1 activity in a time-dependent manner. Neurosci Lett 616, 38-42.
Leventhal, D.K., Gage, G.J., Schmidt, R., Pettibone, J.R., Case, A.C., and Berke, J.D. (2012). Basal ganglia beta oscillations accompany cue utilization. Neuron 73, 523-536.
Li, Q., Ke, Y., Chan, D.C.W., Qian, Z.M., Yung, K.K.L., Ko, H., Arbuthnott, G.W., and Yung, W.H. (2012). Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex. Neuron 76, 1030-1041.
Little, S., and Brown, P. (2014). The functional role of beta oscillations in Parkinson's disease. Parkinsonism Relat Disord 20 Suppl 1, S44-48.
Manson, A.J., Turner, K., and Lees, A.J. (2002). Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson's disease: long-term follow-up study of 64 patients. Mov Disord 17, 1235-1241.
Nambu, A., Takada, M., Inase, M., and Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16, 2671-2683.
Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., Ikeuchi, Y., and Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84, 289-300.
Nambu, A., Tokuno, H., and Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 43, 111-117.
Olanow, C.W., and Tatton, W.G. (1999). Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22, 123-144.
Pan, M.K., Kuo, S.H., Tai, C.H., Liou, J.Y., Pei, J.C., Chang, C.Y., Wang, Y.M., Liu, W.C., Wang, T.R., Lai, W.S., et al. (2016). Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. J Clin Invest 126, 4516-4526.
Quinn, E.J., Blumenfeld, Z., Velisar, A., Koop, M.M., Shreve, L.A., Trager, M.H., Hill, B.C., Kilbane, C., Henderson, J.M., and Bronte-Stewart, H. (2015). Beta Oscillations in Freely Moving Parkinson's Subjects Are Attenuated During Deep Brain Stimulation. Movement Disord 30, 1750-1758.
Ray, N.J., Jenkinson, N., Wang, S., Holland, P., Brittain, J.S., Joint, C., Stein, J.F., and Aziz, T. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213, 108-113.
Smith, G.A., Heuer, A., Klein, A., Vinh, N.N., Dunnett, S.B., and Lane, E.L. (2012). Amphetamine-Induced Dyskinesia in the Transplanted Hemi-Parkinsonian Mouse. J Parkinson Dis 2, 107-113.
Torres, E.M., Lane, E.L., Heuer, A., Smith, G.A., Murphy, E., and Dunnett, S.B. (2011). Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. J Neurosci Methods 200, 29-35.
Uhl, G.R., Hedreen, J.C., and Price, D.L. (1985). Parkinsons-Disease - Loss of Neurons from the Ventral Tegmental Area Contralateral to Therapeutic Surgical Lesions. Neurology 35, 1215-1218.