簡易檢索 / 詳目顯示

研究生: 黃獻輝
Hsian-Huei Huang
論文名稱: 流道幾何形狀對直接甲醇燃料電池陽極端雙相流現象之影響─以H2SO4和NaHCO3化學反應模擬CO2生成
Effects of Channel Geometry on Two-Phase Flow Phenomena at the anode in a micro-DMFC--with CO2 Bubbles Produced by Chemical Reactions of H2SO4 and NaHCO3
指導教授: 潘欽
Chin Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 82
中文關鍵詞: 直接甲醇燃料電池雙相流漸擴流道
外文關鍵詞: DMFC, two-phase flow, diverging flow channel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用H2SO4水溶液及NaHCO3水溶液在流道中混合後進行化學反應,生成CO2氣泡,用以模擬直接甲醇燃料電池陽極端的雙相流行為。將不同濃度之H2SO4水溶液及NaHCO3水溶液通入由壓克力製成的蛇形等截面積流道 (SSF)、漸擴流道 (SDSF-2°, SDSF-3°)以探討雙相流現象。
    研究結果顯示:流譜的觀察中,三種流道上游的流譜大都為氣泡流,流道下游的流譜大都為袋狀流或是環形流。在工作流體濃度低的實驗條件下,漸擴流道SDSF-2□中較少CO2氣泡產生,其原因可能是在漸擴流道SDSF-2□中流體流動的速度較快,造成工作流體混合效果較差,使化學反應不易發生,氣泡生成較少;在漸擴流道SDSF-3□流動的工作流體速度較慢的影響下,混合效果較佳,有利於化學反應的發生,氣泡生成較多。CO2氣泡在轉角處生成較多,可能是因為流體流經轉角處會產生二次流。三種流道中生成的CO2氣泡,大致上均呈現線性成長的模式。
    實驗壓降部分,漸擴流道SDSF-3□中的實驗壓降值較等截面積流道(SSF)及漸擴流道SDSF-2□中的實驗壓降值為低。在不同實驗條件下,可發現壓降皆有一高頻振盪,其頻率約為45Hz,這可能是聲波振盪的表現。


    The present study utilizes sulfuric acid (H2SO4) solution and sodium bicarbonate (NaHCO3) solution mixing in the minichannel to produce carbon dioxide (CO2) through chemical reactions to simulate the two-phase flow transportation at the anode side of a DMFC through the following chemical reaction.
    Research results shows that the upstream flow pattern in three kinds of flow channel (SSF, SDSF-2□, SDSF-3□) is mostly bubbly flow; the downstream flow pattern is mostly slug flow or annular flow. Few CO2 bubbles are generated in SDSF-2□□Under the condition of low concentration. This could be the fluid velocity in SDSF-2□□□is fast, causing poor mixing of two working solutions On the other hand, more CO2 bubbles are produced in SDSF-3□□due to slower fluid velocity, and the mixing of two working solutions is better. More CO2 bubbles are generated at U-bends. This could be when fluid flow through a U-bend, a secondary flow will take place there. The CO2 bubbles are generated in three kinds of flow channel growing approximately linearly.
    The experimental pressure drop part, the pressure drops in SDSF-3□ is lower than those of SSF and SDSF-2□□ All of the two-phase pressure drop data exhibit a small amplitude, high frequency oscillation of about 45Hz.

    Contents Abstract………………………………………………………………….. I Contents………………………………………………………………… II Lists of Tables…………………………………………………….……. IV Lists of Figures ……………………………………………………….…V Symbol Map………………………………………………………….VIII CHAPTER ONE Introduction...........................1 1.1 Preface 1 1.2 Micro fuel cells 4 1.3 The motifs of the present study 6 1.4 The experimental methods of the present study 7 1.5 Structure of the Thesis 8 CHAPTER TWO Literature Review 9 2.1 Literatures of two-phase flow phenomena in minichannels and microchannels 9 2.2 Literatures of the pressure drops inside small diameter tubes 13 CHAPTER THREE Design and Fabrication of the Minichannel and the Experimental System 15 3.1 The flow channel area 15 3.2 The test loop 17 3.3 Experimental methods and procedures 20 3.4 The determination of hydraulic diameter 22 CHAPTER FOUR Results and Discussions 27 4.1 Two-phase flow patterns 27 4.1.1 The flow pattern in SSF 28 4.1.2 Flow pattern in SDSF-2□ 36 4.1.3 Flow pattern in SDSF-3□ 43 4.1.4 Comparisons of the Flow Pattern Different Channels 51 4.2 The growth rate of bubble radius 55 4.3 Analysis of experimental pressure drop 60 4.3.1 Single-phase, single–component pressure drop 61 4.3.2 Analysis of the two–phase pressure drop 67 4.3.3 The analysis of pressure drop oscillation 70 CHAPTER FIVE Conclusions 76 REFERENCE 78

    [1]. M. Crichton, “State of Fear”, p.101-108, 231-234, 293-298, 437-458, 462-464, 497-504, 561-565, 671-682, Yuan-Liou Publishing Co., Ltd, Taiwan, 2005 (in Chinese).
    [2]. J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltman and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica”, Nature, Vol. 399, pp. 429-436, 1999.
    [3]. http://data.giss.nasa.gov/gistemp/graphs/
    [4]. Al Gore, “An Inconvenient Truth”, Rodale Inc., 2006.
    [5]. Peter Hoffmann, “Tomorrow’s Energy: Hydrogen, Fuel Cells, and the prospects for a Cleaner Planet”, MIT Press, 2001.
    [6]. R. Edinger, S. Kaul, “Sustainable Mobility: Renewable Energies for Powering Fuel Cell Vehicles”, Conn Greenwood Publishing Group, 2003.
    [7]. S. Giddey, F.T. Ciacchi, S.P.S. Badwal, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity”, Journal of Power Sources, Vol. 125, pp. 155-165, 2005.
    [8]. K. NISHIDA, T. TAKAGI, S. KINOSHITA, T. TSUJI, “Performance evaluation of multi-stage SOFC and gas turbine combined systems”, in: Proceedings of ASME TURBO EXPO, pp.333-340, 2002.
    [9]. G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang, “Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta, Vol. 49, pp. 821-828, 2004.
    [10]. M. Baldauf, and W. Preidel, “Status of the development of a direct methanol fuel cell”, Journal of Power Sources, Vol. 84, pp. 161-166, 1999.
    [11]. A. Heinzel and V.M. Barragán, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, Journal of Power Sources, Vol. 84, pp. 70-74, 1999.
    [12]. S.C Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, “Direct methanol fuel cells: progress in cell performance and cathode research”, Electrochimica Acta, Vol. 47, pp. 3741-3748, 2002.
    [13]. K. Sundmacher and K. Scott, “Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapor-liquid-solid system”, Chemical Engineering Science, Vol. 54, pp. 2927-2936, 1999.
    [14]. P. Argyropoulos, K. Scott, W.M. Taama, “Carbon dioxide evolution patterns in direct methanol fuel cells”, Electrochimica Acta, Vol. 44, pp. 3575-3584, 1999.
    [15]. D.S. Meng, J. Kim, C.J. Kim, “A distributed gas breather for micro direct methanol fuel cell (μ-DMFC)”, in: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 534–537, 2003.
    [16]. I.Y. Chen, C.C. Wang, P.S. Huang, B.C. Yang, Y.J. Chang, “Influence of vertical return bend on the two phase flow pattern in a 3-mm minichannel”, in: Proceedings of the First International Conference on Microchannels and Minichannels, pp. 493-498, 2003.
    [17]. C.C. Wang, I.Y. Chen, Y.W. Yang, Y.J. Chang, “Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 2975-2981, 2003.
    [18]. G.Q. Lu, C.Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell”, Journal of Power Sources, Vol. 134, pp. 33-40, 2004.
    [19]. T. Bewer, T. Beckmann, H, Dohle, J. Mergel, D. Stolten, “Novel method for investigation of two-phase in liquid feed direct methanol fuel cell using an aqueous H2O2 solution”, Journal of Power Sources, Vol. 125, pp. 1-9, 2004.
    [20]. H. Yang, T.S. Zhao, Q. Ye, “Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance.” Electrochemistry Communications, Vol. 6, pp. 1098-1103, 2004.
    [21]. K. Tüber, A. Oedegaard, M. Hermann, C.Hebling, “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells”, Journal of Power sources, Vol. 131, pp. 175-181, 2004.
    [22]. H. Yang, T.S. Zhao, Q. Ye, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields”, Journal of Power Sources, Vol. 139, pp.79-90, 2005.
    [23]. H. Yang, T.S. Zhao, Q. Ye, “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells”, Electrochimica Acta, Vol. 50, pp. 3243-3252, 2005.
    [24]. J.J. Hwang, F.G. Tseng, C. Pan, “Ethanol-CO2 two-phase flow in diverging and converging microchannels”, International Journal of Multiphase Flow, Vol. 31, pp. 548-570, 2005.
    [25]. P. Argyropoulos, K. Scott, W.M. Taama, “Pressure drop modeling for liquid feed direct methanol fuel cells Part I. Model development, Part II. Model based parametric analysis”, Chemical Engineering Journal, Vol. 78, pp. 29-41, 2000.
    [26]. I.Y. Chen, K.S. Yang, Y.J. Chang, C.C. Wang, “Two-phase drop of air-water and R-410A in small horizontal tubes”, International Journal of Multiphase Flow, Vol. 27, pp. 1293-1299, 2001.
    [27]. I.Y. Chen, Y. K. Lai, C.C. Wang, “Frictional performance of U-type wavy tubes”, Journal of Fluids Engineering, Vol. 125, pp. 880-886, 2003.
    [28]. C.C. Wang, I.Y. Chen, H.J. Shyu, “Frictional performance of R-22 and R-410A inside a 5.0 mm wavy diameter tube”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 755-760, 2003.
    [29]. C.O. Popieil, J. Wojtkowiak, “Friction factor in U-Type undulated pipe”, Journal of Fluids Engineering, Vol. 122, pp. 260-263, 2000.
    [30]. I.Y. Chen, C.C. Wang, S.Y. Lin, “Measurements and correlations of frictional single-phase and two-phase drops of R-410A flow in small U-type return bends”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 2241-2249, 2004.
    [31]. D.F. Geary, “Return bend pressure drop in refrigeration systems”, ASHRAE Trans. Vol. 81 (1), pp. 250-264, 1975.
    [32]. H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells”, Journal of Power Sources, Vol. 142, pp. 117-124, 2005.
    [33]. B.R. Fu, F.G. Tseng C. Pan, “Two-phase flow pattern in converging or diverging microchannels with CO2 bubbles produced by chemical reactions”, Proc. Third Int. Conf. on Microchannels and Minichannels, June 13-15, 2005, Toronto, Ontario, Canada.
    [34]. C. Pan, “Heat transfer of boiling and two-phase flow”, Junjei Books Co., Taipei, 2001 (in Chinese).
    [35]. D.R. Lide et al., CRC Handbook of Chemistry and Physics, 83rd edition, CRC Press,2002.
    [36]. J. Kendall and K.P. Monroe, “The viscosity of liquids. Ⅱ. The viscosity-composition curve for ideal liquid mixtures”, Journal of the American Chemical Society, Vol. 39, pp. 1787-1802,1917.
    [37]. F.M. White, “Fluid Mechanics”, third edition, p. 340, McGraw-Hill Book Co., New York, 1979.
    [38]. B.R. Munson, D. F. Young, T.H. Okiishi, “Fundamentals of Fluid Mechanics”, fourth edition, p. 489, John Wiley & Sons, Inc., 2002.
    [39]. J.P. Hartnett and M. Kostic, “Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts”, Advances in Heat Transfer, Vol. 19, pp. 247-356,1989.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE