研究生: |
吳逸恩 Wu, I-En |
---|---|
論文名稱: |
溫度敏感型聚酯類水膠作為免疫抑制藥物傳遞系統之應用於同種異體皮膚移植 Thermosensitive Polyester Hydrogel for Application of Immunosuppressive Drug Delivery System in Skin Allograft |
指導教授: |
朱一民
Chu, I-Ming 陳韻晶 Chen, Yun-Ching |
口試委員: |
黃振煌
Huang, Jen-Huang 姚少凌 Yao, Chao-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 溫度敏感型 、他克莫司 、同種異體移植 |
外文關鍵詞: | thermosensitive, tacrolimus, allotransplantation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
他克莫司是一種的免疫抑制藥物,能夠用於抑制急性排斥反應,常用於同種異體移植後患者之治療,在血清中維持穩定的藥物濃度,會有比較良好的治療效果。然而,傳統的治療是利用口服或注射的途徑給藥,後者造成患者的不方便,前者會遇到藥物過量或患者在治療中依從性低下的問題。本研究選用溫度敏感型聚酯類水膠作為藥物載體,包覆疏水性免疫抑制藥物他克莫司,期望能藉由藥物控制釋放系統,達到緩慢且持續釋放的效果。材料的製備是以methoxy poly(ethylene glycol)作為起始劑,與D,L-lactide、caprolactone進行開環聚合反應,合成出mPEG-PLCL兩團聯共聚物,將這此種共聚物分別配製成水膠,比較不同組成水膠性質與包覆效果,以找出較適合包覆他克莫司之藥物載體。
其中,在本研究中我們嘗試不同的助溶劑以包覆他克莫司於mPEG-PLCL,最終發現以0.5 % 的PVP在藥物釋放以及包覆效果有最佳的效果。在體外藥物釋放以及動物實驗中,我們可以成功的讓藥物定點的穩定釋放30天也不會出現藥物突釋的現象。此外,從動物同種異體皮膚移植的實驗中,此劑型提高了移植的存活率。顯示出本研究的水膠配方具有傳送抑制免疫藥物,改善治療效果的潛力。
Tacrolimus (FK506) is a common immunosuppressive drug that is capable of suppressing acute rejection reactions, and is used to treat patients after allotransplantation. A stable and suitable serum concentration of tacrolimus is desirable for better therapeutic effects. However, daily drug administration via oral or injection routes is quite inconvenient and may encounter drug overdose or low patient compliance problems. In this research, our objective was to develop an extended delivery system using a thermosensitive hydrogel of poly ethylene glycol, D,L-lactide (L), and ϵ-caprolactone (CL) block copolymer, mPEG-PLCL, as a drug depot. The formulation of mPEG-PLCL and 0.5% PVP-dissolved tacrolimus was studied and the optimal formulation was obtained. The in vivo data showed that in situ gelling is achieved, a stable and sustained release of the drug within 30 days can be maintained, and the hydrogel was majorly degraded in that period. Moreover, improved allograft survival was achieved. Together, these data imply the potential of the current formulation for immunosuppressive treatments.
[1] Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118.
[2] Franklin, L.; Sun, A.M. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science 1980, 210, 908–910.
[3] Yannas, I.V.; Lee, E.; Orgill, D.P.; Skrabut, E.M.; Murphy, G.F. Synthesis and Characterization of a Model Extracellular Matrix That Induces Partial Regeneration of Adult Mammalian Skin. Proc. Natl. Acad. Sci. USA 1989, 89, 933–937.
[4] Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. 2017, 79, 958–971.
[5] Das, D.; Pal, S. Modified Biopolymer-Dextrin Based Crosslinked Hydrogels: Application in Controlled Drug Delivery. RSC Adv. 2015, 5, 25014–25050.
[6] Yue, K., Li, X., Schrobback, K., Sheikhi, A., Annabi, N., Leijten, J., Zhang, W., Zhang, Y. S., Hutmacher, D. W., Klein, T. J., & Khademhosseini, A. Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials 2017.139, 163–171.
[7] Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007.
[8] Satish, C.S.; Satish, K.; Shivakumar, H.G. Hydrogels as Controlled Drug Delivery Systems: Synthesis, Crosslinking, Water and Drug Transport Mechanism. Indian J. Pharm. Sci. 2006, 68, 133–140.
[9] Parikh, J.; Raval, A. Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends Biomater. Artif. Organs. 2011, 25, 79–85.
[10] David W Ball, John W Hill, Rhonda J. Scott, The Basics of General, Organic, and Biological Chemistry. 15: Organic Acids and Bases and Some of Their Derivatives, 2011.
[11] A.K. Bajpai, Sandeep K.Shukla, Smitha Bhanu and Sanjana Kankane, Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008, 33(11): 1088-1118.
[12] Ghosh, S. Recent Research and Development in Synthetic Polymer-Based Drug Delivery Systems. J. Chem. Res. 2004, 2004, 241–246.
[13] Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive Sol–Gel Reversible Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162.
[14] L. Huang, Y.-M. Chu. The Study of Polyester Temperatur Sensitive Hydrogel for Immunosuppressive Drug Delivery. National Tsing Hua University: Chemical Engineering DepartmentTW, Master Thesis, 2009.
[15] Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews, 2012, 54(1): 37-51.
[16] Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008 Aug, 37(8). 1473-81.
[17] Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102406.
[18] Sammour, O.A.; Hammad, M.A.; Megrab, N.A.; Zidan, A.S. Formulation and Optimization of Mouth Dissolve Tablets Containing Rofecoxib Solid Dispersion. AAPS PharmSciTech 2020, 7, E55.
[19] Franco, P.; de Marco, I. The Use of Poly (N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers. 2020, 12, 1114.
[20] Murphy, Blake D., et al. Vascularized composite allotransplantation: an update on medical and surgical progress and remaining challenges. Journal of plastic, reconstructive & aesthetic surgery: 2013, JPRAS vol. 66, 11: 1449-55.
[21] Alhefzi, M., Aycart, M.A., Bueno, E.M. et al. Treatment of Rejection in Vascularized Composite Allotransplantation. Curr Transpl Rep. 2016, 3, 404–409.
[22] Sarhane KA, Tuffaha SH, Broyles JM, Ibrahim AE, Khalifian S, Baltodano P, Santiago GF, Alrakan M, Ibrahim Z. A critical analysis of rejection in vascularized composite allotransplantation: clinical, cellular and molecular aspects, current challenges, and novel concepts. Front Immunol. 2013, Nov 25; 4: 406.
[23] Sehgal, Virendra N., et al. Tacrolimus in dermatology-pharmacokinetics, mechanism of action, drug interactions, dosages, and side effects: part I. Skinmed. 2008. vol. 7,1: 27-30.
[24] Thomson, A.W.; Bonham, C.A.; Zeevi, A. Mode of Action of Tacrolimus (FK506): Molecular and Cellular Mechanisms. Ther. Drug Monit. 1995, 17, 584–591.
[25] Xu W, Ling P, Zhang T. Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly (ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int J Pharm. 2014, 460 (1-2): 173-80.
[26] Lee, Y.-M., Thermosensitive mPEG-PLGA hydrogels:Synthesis and effect of copolymer composition on the drug delivery system. National Tsing Hua University: Master Thesis, Chemical Engineering DepartmentTW. Master Thesis, 2010.
[27] Darnell, M.C.; Sun, J.-Y.; Mehta, M.; Johnson, C.; Arany, P.R.; Suo, Z.; Mooney, D.J. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels. Biomaterials 2013. 34: 8042–8048.
[28] Lin, C.-Y.; Peng, H.-H.; Chen, M.-H.; Sun, J.-S.; Liu, T.-Y.; Chen, M.-H. In Situ Forming Hydrogel Composed of Hyaluronate and Polygalacturonic Acid for Prevention of Peridural Fibrosis. J. Mater. Sci. Mater. Med. 2015, 26, 168.
[29] Lin, C.-H.; Anggelia, M.R.; Cheng, H.-Y.; Wang, A.Y.L.; Chuang, W.-Y.; Lin, C.-H.; Lee, W.P.A.; Wei, F.-C.; Brandacher, G. The Intragraft Vascularized Bone Marrow Component Plays a Critical Role in Tolerance Induction after Reconstructive Transplantation. Cell. Mol. Immunol. 2021, 18, 363–373.
[30] Han, C.; Guo, Y.; Chen, X.; Yao, M.; Zhang, Y.; Zhang, Q.;Wei, X. Phase behaviour and temperature-responsive properties of a gemini surfactant/Brij-30/water system. Soft Matter 2017, 13, 1171–1181.
[31] Shao, K.; Lu, Y.; Wang, J.; Chen, X.; Zhang, Z.; Wang, X.; Wang, X.; Yang, H.; Liu, G. Different Effects of Tacrolimus on Innate and Adaptive Immune Cells in the Allograft Transplantation. Scand. J. Immunol. 2016, 83, 119–127.
[32] Brandacher, G.; Lee,W.P.; Schneeberger, S. Minimizing immunosuppression in hand transplantation. Expert Rev. Clin. Immunol. 2012, 8, 673–684.
[33] Lee, J.R.; Muthukumar, T.; Dadhania, D.; Taur, Y.; Jenq, R.R.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS ONE 2015, 10, e0122399.