研究生: |
賴天珩 Lai, Tien-Hen |
---|---|
論文名稱: |
應用於有機發光二極體顯示器外部補償系統之電流感測電路設計 The Design of Current Sensing Circuit for AMOLED Display External Compensation System |
指導教授: |
盧志文
LU, CHIH-WEN 楊雅棠 YANG, YA-TANG |
口試委員: |
陳柏宏
CHEN, PO-HUNG 徐永珍 HSU, YUNG-JANE |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 有機發光二極體顯示器 、外部補償系統 、電流感測電路 、電流積分電路 、薄膜電晶體臨界電壓飄移 、有機發光二極體衰退 |
外文關鍵詞: | Active matrix organic light emitting diode(AMOLED), External compensation system, Current sensing circuit, Current integrator, thin-film transistors (TFTs) variation, OLED degradation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文為應用於有機發光二極體顯示器外部補償系統之電流感測電路設計。近年來主動式有機發光二極體顯示器之市場成長快速然而有機發光二極體顯示器的畫素電路之薄膜電晶體會由於製程差異或在長時間的操作下元件老化衰退導致畫素電路內的臨界電壓與電子遷移率產生偏移的現象,除此之外有機發光二極體的也會隨著使用時間產生衰退的現象使得臨界電壓上升,導致致面板顯示品質降低。故本論文提出的電流感測電路將針對畫素電路裡的驅動薄膜電晶體的臨界電壓變化與有機發光二極體的衰退現象進行電性的感測。此外面板的負載會影響電流積分器的電流感測線性度,故在本論文中提出能夠改善電流感測線性度之電流放大器架構與頻率補償方式以增加外部補償系統的精準度。
本感測電路所偵測之畫素電流範圍為-0.5μA~0.5μA,輸入電壓範圍為3V~9V,輸出電壓範圍為0.4V~1.4V,並操作在18V/1.8V工作電壓下,面板等效負載使用五級RC等效方式,分別為五顆串聯的1KΩ電阻與五顆並聯的60pF電容。此電流感測電路,包含將畫素電流轉為電壓的電流積分器、電壓位準轉換器的反向放大器與取樣保持電路,並且使用世界先進積體電路股份有限公司所提供的VIS 0.18µm 1P6M CMOS 高壓製程設計與下線,本晶片共200個通道,整體晶片面積為21125µm×1363.8µm。模擬結果為電流感測電路最小解析度1LSB=0.9765mV,其線性度為INL=0.02LSB、DNL=0.035LSB與Gain error=3.47%.
In this thesis,the current sensing circuit is implemented for an active matrix organic light emitting diode (AMOLED) display external compensatoin system. In recent years, AMOLED displays have developed rapidly. However, the thin-film transistors (TFTs) of AMOLED display pixel circuit threshold voltage and mobility may vary or shift because of either fabrication process variation or long-term operation. Additionally, the threshold voltage of OLED increases due to the degradation of organic materials. Consequently, these problems reduce the image quality of AMOLED displays. The current sensing circuit is proposed in this work which can sense the electrical characteristics of threshold voltage shifts of driving TFTs and OLEDs, to eliminate these issue. Furthermore, the panel loading influence the linearity of current sensing circuit .The novel structure and frequency compensation methods are proposed to solve linearity issue.
The sensing range of the current sensing circuit is -0.5μA~0.5μA , the input common mode voltage is 3V~9V,and the output voltage range is 0.4V~1.4V. The operation voltage is 1.8V/18V. The panel load is emulated in 5-stage RC which series five 1KΩ resistors and parallel five 60pF capacitors.The current sensing circuit includes current integrator which convert current to voltage , level shifter amplifier and S/H circuit.
This chip implemented VIS 0.18µm 1P6M CMOS high voltage process provided by Vanguard International Semiconductor Corporation.This chip includes 200 channels. The die area of this chip is 21125µm×1363.8µm. The 1LSB resolution of current sensing circut is 0.9765mV. The maximum DNL and INL of the current sensing circuit is 0.035LSB and 0.02LSB ,and gain error is 3.47% respectively.
[1]S. Kunić and Z. Šego, "OLED technology and displays," Proceedings ELMAR-2012, Zadar, pp. 31-35, 2012.
[2]Reza Chaji, Arokia Nathan,"Thin film transistor circuits and systems,"Cambridge University Press,2013.
[3]J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Invited: comparison of a-Si and poly-Si for AMOLEDs,” in SID Tech. Dig., pp. 1504-1507, 2004.
[4]A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS
AMOLED displays,” IEEE/OSA Journal of Display Technology, vol. 1, no. 2, pp.
267-277, Dec. 2005.
[5]S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel
design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron
Device Lett., vol. 25, no. 10, pp. 690-692, Oct. 2004.
[6]M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E.Fortunato, R. Martins, and I. Ferreira, “Gate-bias stress in amorphous oxidesemiconductors thin-film transistors,” Appl. Phys. Lett., vol. 95, no. 6, pp. 063502,2009.
[7]H. H. Hsieh, T. T. Tsai, C. Y. Chang, H. H. Wang, J. Y. Huang, S. F. Hsu, Y. C. Wu, T.C. Tsai, C. S. Chuang, L. H. Chang, and Y. H. Lin, “A 2.4-in. AMOLED with IGZOTFTs and inverted OLED devices,” in SID Tech. Dig., pp. 140-143, 2010.
[8]A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan and D. Striakhilev, "Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic," in IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sept. 2004.
[9] R. M. A. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart,A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C.W. Tang, S. Van Slyke, F.Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., pp. 875-878, 1998.
[10] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp.
2493-2495, May 2000.
[11] G. R. Chaji, P. Servati and A. Nathan, "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel," in Electronics Letters, vol. 41, no. 8, pp. 499-500, 14 April 2005.
[12] A. Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," in Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec. 2005.
[13] Y. Lin and H.-P. D. Shieh, “A novel current memory circuit forAMOLEDs,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp.1037–1040, Jun. 2004.
[14] H.-J. In and O.-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[15] Tanabe, T., Amano, S., Miyake, H., Suzuki, A., Komatsu, R., Koyama, J., “New Threshold Voltage Compensation Pixel Circuits in 13.5-inch Quad Full High Definition OLED Display of Crystalline In-Ga-Zn-Oxide FETs,” SID Symp. Dig. Tech. Pap,2012
[16] Y.-J. Jeon, J.-Y. Jeon, Y.-S. Son, J. Huh, and G.-H. Cho, “A high-speed current-mode data driver with push-pull transient current feedforward for full-HD AMOLED displays,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1881–1895, Sep. 2010.
[17] J. Bang et al., "A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 966-978, April 2016.
[18] H. In et al., "An Advanced External Compensation System for Active Matrix Organic Light-Emitting Diode Displays With Poly-Si Thin-Film Transistor Backplane," in IEEE Transactions on Electron Devices, vol. 57, no. 11, pp. 3012-3019, Nov. 2010.
[19] G. R. Chaji and A. Nathan, "A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 7, pp. 614-618, July 2008.
[20] J.-S. Bang, H.-S. Kim, S.-H. Park, G.-H. Kim, and G.-H. Cho, “A real-time TFT compensation through power line current sensing for high resolution AMOLED displays,” in SID Symp. Dig. Tech. Papers, 2014.
[21] Shunpei Yamazaki, Tetsuo Tsutsui,” Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Application to Displays,” Wiley Series in Display Technology, pp.280-282, Feb. 2017.