研究生: |
曼尼詩 Manish Bhuwan |
---|---|
論文名稱: |
Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain 綠膿桿菌PAO1中hptB蛋白藉由夥伴交換系統調控群泳能力之分析 |
指導教授: |
張晃猷
Chang, Hwan You |
口試委員: |
彭慧玲
Peng, Hwei Ling 林靖婷 Lin, ChingTing 高茂傑 Kao, MouChieh 鄧文玲 Deng, WenLing |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 含組氨酸的磷酸轉移蛋白B 、群泳 、夥伴交換系統 、綠膿桿菌 、雙分子系統 |
外文關鍵詞: | Histidine phosphotransfer protein B, Swarming, Partner switching system, Pseudomonas aeruginosa, Two component system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含組氨酸的磷酸轉移蛋白B (HptB, PA3345)是在Pseudomonas aeruginosa PAO1中,參與將磷酸基從多重感應激酶轉移到反應調控子PA3346的其中之一個蛋白。本論文研究目標是探討HptB-PA3346交互作用和其調控機制的生物意義。剔除hptB基因突變株作轉錄分析(transcription-profiling analysis)後,發現一系列與移動性相關的基因改變,與突變株群泳(swarming)性狀的觀察情形一致。蛋白質結構分析發現,PA3346的C端區域(PA3346C)與枯草桿菌 anti-sigma因子SpoIIAB顯示出大約百分之三十的相似度。利用體外磷酸化分析得知,Ser/Thr蛋白激酶活化anti-sigma拮抗劑PA3347胺基酸Ser-56,此現象也在PA3346C中被證實。此外,PA3346C和anti-σ28因子FlgM發現不管在體內還是體外實驗,都與PA3347有直接作用。在反應時,FlgM取代PA3346C與PA3347結合,之後σ28完全取代掉PA3347-FlgM複合體中的 PA3347,形成磷酸根依賴性夥伴交換系統。藉由分析剔除PA3346基因突變株和其互補株,本研究建立PA3347磷酸化在連結夥伴交換系統和群泳移動力中,所扮演的重要性。在hptB基因突變株將磷酸酯解酶過度表現,則會發現群泳性狀缺陷的情況會回復,顯示出htpB蛋白調節細胞內訊號分子環狀雙鳥嘌呤單磷酸(cyclic-di-GMP)訊息傳遞路徑進而調控群泳性狀。
The Histidine-containing phosphotransfer protein-B (HptB, PA3345) is an intermediate protein involved in transferring a phosphoryl group from multiple sensor kinases to the response regulator PA3346 in Pseudomonas aeruginosa PAO1. The objective of this study is to elucidate the biological significance of the HptB-PA3346 interaction and the regulatory mechanisms thereafter. The transcription-profiling analysis of an hptB knockout mutant showed that the expression of a number of motility-related genes was altered, consistent with the non-swarming phenotype observed for the mutant. Domain analysis indicates that the PA3346 C-terminal region (PA3346C) exhibits approximately 30% identity with the anti-sigma factor SpoIIAB of Bacillus subtilis. The presence of Ser/Thr protein kinase activity-targeting an anti-sigma antagonist PA3347 at Ser-56 was confirmed in PA3346C using an in vitro phosphorelay assay. Furthermore, PA3346C and the anti-σ28 factor FlgM were found to interact with PA3347 individually both in vivo and in vitro. FlgM displaced PA3346C in binding of PA3347 and was then competitively displaced by σ28 from the PA3347-FlgM complex, forming a phosphorylation-dependent partner-switching system. The significance of PA3347 phosphorylation in linking the partner-switching system and swarming motility was established by analyzing the swarming phenotype of the PA3347 knockout mutant and its complement strain. The over expression of phosphodiesterase in hptB mutant restore its swarming motility defect showing the role of intracellular signaling molecule cyclic-di-GMP in regulating the motility behavior of HptB mediated signaling pathway.
References
1. Mascher, T., J.D. Helmann, and G. Unden, Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 910-38.
2. Rodrigue, A., et al., Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol, 2000. 8(11): p. 498-504.
3. Da Re, S., et al., Phosphorylation-induced dimerization of the FixJ receiver domain. Mol Microbiol, 1999. 34(3): p. 504-11.
4. Wyman, C., et al., Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science, 1997. 275(5306): p. 1658-61.
5. Francez-Charlot, A., et al., Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3467-72.
6. Alper, S., L. Duncan, and R. Losick, An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell, 1994. 77(2): p. 195-205.
7. Yang, X., et al., Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev, 1996. 10(18): p. 2265-75.
8. Diederich, B., et al., Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis. Genes Dev, 1994. 8(21): p. 2653-63.
9. Kozak, N.A., et al., Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol, 2005. 187(16): p. 5665-76.
10. Chen, Y.T., et al., Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J Mol Evol, 2004. 59(6): p. 725-37.
11. Hsu, J.L., et al., Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem, 2008. 283(15): p. 9933-44.
12. Lin, C.T., et al., Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Res Microbiol, 2006. 157(2): p. 169-75.
13. Dasgupta, N., et al., A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol, 2003. 50(3): p. 809-24.
14. Stover, C.K., et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000. 406(6799): p. 959-64.
15. Totten, P.A., J.C. Lara, and S. Lory, The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol, 1990. 172(1): p. 389-96.
16. Starnbach, M.N. and S. Lory, The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol Microbiol, 1992. 6(4): p. 459-69.
17. Frisk, A., et al., Identification and functional characterization of flgM, a gene encoding the anti-sigma 28 factor in Pseudomonas aeruginosa. J Bacteriol, 2002. 184(6): p. 1514-21.
18. Feldman, M., et al., Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun, 1998. 66(1): p. 43-51.
19. Montie, T.C., et al., Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect Immun, 1982. 38(3): p. 1296-8.
20. Bordi, C., et al., Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76(6): p. 1427-43.
21. Brencic, A., et al., The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol, 2009. 73(3): p. 434-45.
22. Laub, M.T. and M. Goulian, Specificity in two-component signal transduction pathways. Annu Rev Genet, 2007. 41: p. 121-45.
23. Ferrandez, A., et al., Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J Bacteriol, 2002. 184(16): p. 4374-83.
24. Jiang, M., et al., Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol, 2000. 38(3): p. 535-42.
25. Henke, J.M. and B.L. Bassler, Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol, 2004. 186(20): p. 6902-14.
26. Wheeler, R.T. and L. Shapiro, Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell, 1999. 4(5): p. 683-94.
27. Ishige, K., et al., A novel device of bacterial signal transducers. EMBO J, 1994. 13(21): p. 5195-202.
28. Perraud, A.L., V. Weiss, and R. Gross, Signalling pathways in two-component phosphorelay systems. Trends Microbiol, 1999. 7(3): p. 115-20.
29. Freeman, J.A. and B.L. Bassler, Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol, 1999. 181(3): p. 899-906.
30. Li, S., et al., The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J, 1998. 17(23): p. 6952-62.
31. Xu, Q. and A.H. West, Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J Mol Biol, 1999. 292(5): p. 1039-50.
32. Baikalov, I., et al., Structure of the Escherichia coli response regulator NarL. Biochemistry, 1996. 35(34): p. 11053-61.
33. Djordjevic, S., et al., Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc Natl Acad Sci U S A, 1998. 95(4): p. 1381-6.
34. Buckler, D.R., Y. Zhou, and A.M. Stock, Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure, 2002. 10(2): p. 153-64.
35. Lai, T.H., et al., The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J Bacteriol, 2009. 191(3): p. 693-700.
36. Rogers, E.A., et al., Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol, 2009. 71(6): p. 1551-73.
37. Alper, S., et al., Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J Mol Biol, 1996. 260(2): p. 165-77.
38. Adler, E., et al., Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases. Mol Microbiol, 1997. 23(1): p. 57-62.
39. Wagner, V.E., et al., Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal Bioanal Chem, 2007. 387(2): p. 469-79.
40. Vasil, M.L. and U.A. Ochsner, The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol, 1999. 34(3): p. 399-413.
41. Dean, C.R., S. Neshat, and K. Poole, PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J Bacteriol, 1996. 178(18): p. 5361-9.
42. Van Alst, N.E., et al., Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun, 2007. 75(8): p. 3780-90.
43. McPhee, J.B., et al., Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol, 2006. 188(11): p. 3995-4006.
44. Ramsey, M.M. and M. Whiteley, Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol Microbiol, 2004. 53(4): p. 1075-87.
45. Parkins, M.D., H. Ceri, and D.G. Storey, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol, 2001. 40(5): p. 1215-26.
46. Soscia, C., et al., Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol, 2007. 189(8): p. 3124-32.
47. Caille, O., C. Rossier, and K. Perron, A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol, 2007. 189(13): p. 4561-8.
48. Teitzel, G.M., et al., Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol, 2006. 188(20): p. 7242-56.
49. Hassan, M.T., et al., Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene, 1999. 238(2): p. 417-25.
50. Perron, K., et al., CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem, 2004. 279(10): p. 8761-8.
51. Deretic, V. and W.M. Konyecsni, Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol, 1989. 171(7): p. 3680-8.
52. Whitchurch, C.B., R.A. Alm, and J.S. Mattick, The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9839-43.
53. Goldberg, J.B. and T. Dahnke, Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol, 1992. 6(1): p. 59-66.
54. Wozniak, D.J. and D.E. Ohman, Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol, 1991. 173(4): p. 1406-13.
55. D'Argenio, D.A., et al., Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol, 2002. 184(23): p. 6481-9.
56. Hickman, J.W., D.F. Tifrea, and C.S. Harwood, A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A, 2005. 102(40): p. 14422-7.
57. Kuchma, S.L., J.P. Connolly, and G.A. O'Toole, A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol, 2005. 187(4): p. 1441-54.
58. Kulasekara, H.D., et al., A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol, 2005. 55(2): p. 368-80.
59. Alex, L.A. and M.I. Simon, Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet, 1994. 10(4): p. 133-8.
60. Kennelly, P.J. and M. Potts, Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. J Bacteriol, 1996. 178(16): p. 4759-64.
61. Hanks, S.K., A.M. Quinn, and T. Hunter, The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988. 241(4861): p. 42-52.
62. Munoz-Dorado, J., S. Inouye, and M. Inouye, A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell, 1991. 67(5): p. 995-1006.
63. Popov, K.M., et al., Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem, 1992. 267(19): p. 13127-30.
64. Goldberg, J., A.C. Nairn, and J. Kuriyan, Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell, 1996. 84(6): p. 875-87.
65. Knighton, D.R., et al., Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991. 253(5018): p. 407-14.
66. Young, T.A., et al., Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol, 2003. 10(3): p. 168-74.
67. Johnson, L.N., M.E. Noble, and D.J. Owen, Active and inactive protein kinases: structural basis for regulation. Cell, 1996. 85(2): p. 149-58.
68. Nadvornik, R., et al., Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J Bacteriol, 1999. 181(1): p. 15-23.
69. Wang, L., et al., Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett, 2002. 217(2): p. 155-65.
70. Av-Gay, Y. and M. Everett, The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol, 2000. 8(5): p. 238-44.
71. Juris, S.J., et al., A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc Natl Acad Sci U S A, 2000. 97(17): p. 9431-6.
72. Wang, J., et al., A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice. J Bacteriol, 1998. 180(24): p. 6764-8.
73. Inouye, S., et al., A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb Comp Genomics, 2000. 5(2): p. 103-20.
74. Hanlon, W.A., M. Inouye, and S. Inouye, Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol Microbiol, 1997. 23(3): p. 459-71.
75. Zhang, W., M. Inouye, and S. Inouye, Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol, 1996. 20(2): p. 435-47.
76. Udo, H., et al., Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev, 1995. 9(8): p. 972-83.
77. Wang, J., et al., Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc Natl Acad Sci U S A, 1996. 93(19): p. 10434-9.
78. Mukhopadhyay, S., et al., Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa. J Bacteriol, 1999. 181(21): p. 6615-22.
79. Aravind, L. and E.V. Koonin, The STAS domain - a link between anion transporters and antisigma-factor antagonists. Curr Biol, 2000. 10(2): p. R53-5.
80. Najafi, S.M., D.A. Harris, and M.D. Yudkin, The SpoIIAA protein of Bacillus subtilis has GTP-binding properties. J Bacteriol, 1996. 178(22): p. 6632-4.
81. Voelker, U., A. Voelker, and W.G. Haldenwang, Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol, 1996. 178(18): p. 5456-63.
82. Magnin, T., M. Lord, and M.D. Yudkin, Contribution of partner switching and SpoIIAA cycling to regulation of sigmaF activity in sporulating Bacillus subtilis. J Bacteriol, 1997. 179(12): p. 3922-7.
83. Hua, L., et al., Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis. Mol Microbiol, 2006. 59(2): p. 623-36.
84. Malik, S. and A. Goldfarb, Late sigma factor of bacteriophage T4. Formation and properties of RNA polymerase-promoter complexes. J Biol Chem, 1988. 263(3): p. 1174-81.
85. Williams, K.P., G.A. Kassavetis, and E.P. Geiduschek, Interactions of the bacteriophage T4 gene 55 product with Escherichia coli RNA polymerase. Competition with Escherichia coli sigma 70 and release from late T4 transcription complexes following initiation. J Biol Chem, 1987. 262(25): p. 12365-71.
86. Hughes, K.T., et al., Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science, 1993. 262(5137): p. 1277-80.
87. Williams, A.W., et al., Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J Bacteriol, 1996. 178(10): p. 2960-70.
88. Hecker, M., W. Schumann, and U. Volker, Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol, 1996. 19(3): p. 417-28.
89. Stragier, P. and R. Losick, Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet, 1996. 30: p. 297-41.
90. Benvenisti, L., et al., Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene, 1995. 155(1): p. 73-6.
91. Schurr, M.J. and V. Deretic, Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol Microbiol, 1997. 24(2): p. 411-20.
92. Aramaki, H. and M. Fujita, In vitro transcription analysis of rpoD in Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett, 1999. 180(2): p. 311-6.
93. Tanaka, K. and H. Takahashi, Cloning and analysis of the gene (rpoDA) for the principal sigma factor of Pseudomonas aeruginosa. Biochim Biophys Acta, 1991. 1089(1): p. 113-9.
94. Fujita, M., et al., Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol, 1994. 13(6): p. 1071-7.
95. Hoffmann, N. and B.H. Rehm, Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett, 2005. 27(4): p. 279-82.
96. Ishimoto, K.S. and S. Lory, Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc Natl Acad Sci U S A, 1989. 86(6): p. 1954-7.
97. Martin, D.W., B.W. Holloway, and V. Deretic, Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol, 1993. 175(4): p. 1153-64.
98. Martin, D.W., et al., Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol, 1993. 9(3): p. 497-506.
99. Wu, W., et al., MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol, 2004. 186(22): p. 7575-85.
100. Beare, P.A., et al., Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol, 2003. 47(1): p. 195-207.
101. Cunliffe, H.E., T.R. Merriman, and I.L. Lamont, Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol, 1995. 177(10): p. 2744-50.
102. Redly, G.A. and K. Poole, Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol, 2003. 185(4): p. 1261-5.
103. Llamas, M.A., et al., The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol, 2006. 188(5): p. 1882-91.
104. Chadsey, M.S., J.E. Karlinsey, and K.T. Hughes, The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. Genes Dev, 1998. 12(19): p. 3123-36.
105. Ohnishi, K., et al., A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol, 1992. 6(21): p. 3149-57.
106. Barembruch, C. and R. Hengge, Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol, 2007. 65(1): p. 76-89.
107. Osterberg, S., E. Skarfstad, and V. Shingler, The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida. Environ Microbiol. 12(6): p. 1439-51.
108. Claret, L., et al., The flagellar sigma factor FliA regulates adhesion and invasion of Crohn disease-associated Escherichia coli via a cyclic dimeric GMP-dependent pathway. J Biol Chem, 2007. 282(46): p. 33275-83.
109. Iyoda, S. and K. Kutsukake, Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium. Mol Gen Genet, 1995. 249(4): p. 417-24.
110. Daughdrill, G.W., et al., The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28. Nat Struct Biol, 1997. 4(4): p. 285-91.
111. Sorenson, M.K., S.S. Ray, and S.A. Darst, Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation. Mol Cell, 2004. 14(1): p. 127-38.
112. Christen, M., et al., Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem, 2005. 280(35): p. 30829-37.
113. Paul, R., et al., Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev, 2004. 18(6): p. 715-27.
114. Morey, J.S., J.C. Ryan, and F.M. Van Dolah, Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online, 2006. 8: p. 175-93.
115. Ryjenkov, D.A., et al., Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol, 2005. 187(5): p. 1792-8.
116. Simm, R., et al., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol, 2004. 53(4): p. 1123-34.
117. Jenal, U., Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol, 2004. 7(2): p. 185-91.
118. Romling, U., M. Gomelsky, and M.Y. Galperin, C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol, 2005. 57(3): p. 629-39.
119. Romling, U. and D. Amikam, Cyclic di-GMP as a second messenger. Curr Opin Microbiol, 2006. 9(2): p. 218-28.
120. Cotter, P.A. and S. Stibitz, c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol, 2007. 10(1): p. 17-23.
121. Tamayo, R., J.T. Pratt, and A. Camilli, Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol, 2007. 61: p. 131-48.
122. Moscoso, J.A., et al., The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12): p. 3128-38.
123. Kuchma, S.L., et al., BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol, 2007. 189(22): p. 8165-78.
124. Campbell, E.A., et al., Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. Cell, 2002. 108(6): p. 795-807.
125. Bhuwan, M., et al., Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 Strain. J Biol Chem. 287(3): p. 1903-14.
126. Goodman, A.L., et al., Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev, 2009. 23(2): p. 249-59.
127. Magliery, T.J., et al., Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc, 2005. 127(1): p. 146-57.
128. Wilson, C.G., T.J. Magliery, and L. Regan, Detecting protein-protein interactions with GFP-fragment reassembly. Nat Methods, 2004. 1(3): p. 255-62.
129. Furste, J.P., et al., Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene, 1986. 48(1): p. 119-31.
130. Birnboim, H.C. and J. Doly, A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 1979. 7(6): p. 1513-23.
131. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.
132. Shevchenko, A., et al., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 1996. 68(5): p. 850-8.
133. Smyth, G.K., Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 2004. 3: p. Article3.
134. Savli, H., et al., Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol, 2003. 52(Pt 5): p. 403-8.
135. Yuan, J.S., et al., Statistical analysis of real-time PCR data. BMC Bioinformatics, 2006. 7: p. 85.
136. Sanchez, C.J., et al., The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog. 6(8): p. e1001044.
137. Shivshankar, P., et al., The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol, 2009. 73(4): p. 663-79.
138. Beaton, A.R., et al., The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proc Natl Acad Sci U S A, 2002. 99(20): p. 13154-9.
139. Wilderman, P.J., et al., Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol, 2001. 39(2): p. 291-303.
140. Finelli, A., et al., Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol, 2003. 185(9): p. 2700-10.
141. Martin, P.R., et al., Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol, 1993. 9(4): p. 857-68.
142. De Mot, R., et al., Sequence of Rhodococcus gene cluster encoding the subunits of ethanolamine ammonia-lyase and an APC-like permease. Can J Microbiol, 1994. 40(5): p. 403-7.
143. Vincent, C., et al., Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. Nucleic Acids Res, 1995. 23(7): p. 1113-8.
144. Bren, A. and M. Eisenbach, The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J Mol Biol, 1998. 278(3): p. 507-14.
145. Toker, A.S. and R.M. Macnab, Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol, 1997. 273(3): p. 623-34.
146. Arora, S.K., et al., The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun, 1998. 66(3): p. 1000-7.
147. Min, K.T., et al., Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell, 1993. 74(4): p. 735-42.
148. Zhang, C.C., Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol, 1996. 20(1): p. 9-15.
149. Dutta, R. and M. Inouye, GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci, 2000. 25(1): p. 24-8.
150. Garsin, D.A., et al., The kinase activity of the antisigma factor SpoIIAB is required for activation as well as inhibition of transcription factor sigmaF during sporulation in Bacillus subtilis. J Mol Biol, 1998. 284(3): p. 569-78.
151. Mattoo, S., et al., Regulation of type III secretion in Bordetella. Mol Microbiol, 2004. 52(4): p. 1201-14.
152. Cotter, P.A. and J.F. Miller, BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun, 1994. 62(8): p. 3381-90.
153. Girgis, H.S., et al., A comprehensive genetic characterization of bacterial motility. PLoS Genet, 2007. 3(9): p. 1644-60.
154. Miles, E.W., S. Rhee, and D.R. Davies, The molecular basis of substrate channeling. J Biol Chem, 1999. 274(18): p. 12193-6.
155. Lee, C.S., I. Lucet, and M.D. Yudkin, Fate of the SpoIIAB*-ADP liberated after SpoIIAB phosphorylates SpoIIAA of Bacillus subtilis. J Bacteriol, 2000. 182(21): p. 6250-3.
156. Masuda, S., et al., Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J Mol Biol, 2004. 340(5): p. 941-56.
157. Kroos, L., et al., Control of sigma factor activity during Bacillus subtilis sporulation. Mol Microbiol, 1999. 31(5): p. 1285-94.
158. Overhage, J., et al., Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol, 2008. 190(8): p. 2671-9.
159. Rashid, M.H. and A. Kornberg, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2000. 97(9): p. 4885-90.
160. Turner, L., et al., Visualization of Flagella during bacterial Swarming. J Bacteriol. 192(13): p. 3259-67.
161. Tolker-Nielsen, T., et al., Assessment of flhDC mRNA levels in Serratia liquefaciens swarm cells. J Bacteriol, 2000. 182(10): p. 2680-6.
162. Petrova, O.E. and K. Sauer, SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol. 193(23): p. 6614-28.
163. Mariconda, S., Q. Wang, and R.M. Harshey, A mechanical role for the chemotaxis system in swarming motility. Mol Microbiol, 2006. 60(6): p. 1590-602.
164. Scharf, B.E., et al., Control of direction of flagellar rotation in bacterial chemotaxis. Proc Natl Acad Sci U S A, 1998. 95(1): p. 201-6.
165. Paul, K., et al., The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 38(1): p. 128-39.