研究生: |
呂婉禎 Lu, Wan-Chen |
---|---|
論文名稱: |
SH2B1β減少 PC12 細胞因氧化壓力所引起的細胞死亡 SH2B1β Reduces Oxidative Stress - Induced Cell Death in PC12 Cells |
指導教授: |
陳令儀
Chen, Linyi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 氧化壓力 |
外文關鍵詞: | FoxO, oxidative stress, PC12 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化壓力會導致細胞死亡並與許多疾病和神經退化性疾病,諸如帕金森氏症、阿茲海默症、亨丁頓舞蹈症,息息相關。氧化壓力會產生許多活性氧分子(包括過氧化氫)而造成細胞損傷。氧化壓力會活化許多的細胞內訊息傳遞分子,例如Phosphatidylinositol 3-Kinase (PI3K)-Akt (PKB)主要與細胞存活相關,以及三條絲裂原活化蛋白激酶(MAPK)路徑,包含胞外信號調節激酶(ERK1/2)、c-jun胺基末端激酶(JNK)、p38激酶(p38MAPK),這些激酶被證實會由氧化壓力所活化,並參與細胞存活和細胞死亡之調控。SH2B1□是一種訊息銜接蛋白,在PC12細胞中被發現能促進由神經生長因子(NGF)所調節之神經細胞分化,並且為交感神經元之存活所必需;另外SH2B1□也和調控FoxO轉錄因子有關,FoxO轉錄因子為Akt下游之基因,可調控許多與細胞凋亡或是抗氧化相關之基因,例如Fas ligand和MnSOD。我的論文主要是去測試SH2B1□在氧化壓力所誘導之反應中所扮演的角色。實驗數據顯示SH2B1□可以藉由增強MAPK和Akt的活性,進而降低FasL 基因表現量且增加MnSOD表現量來減少因氧化壓力所導致的細胞凋亡。此外我們發現在過氧化氫處理下,MAPK和Akt皆可磷酸化FoxO1和 FoxO3a,我們更進一步證實SH2B1□會降低由氧化壓力所引發之細胞死亡現象,主要是經由PI3K-AKT-FoxO路徑以及MEK-ERK1/2-FoxO路徑來保護細胞。
1. Degterev, A. and J. Yuan, Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol, 2008. 9(5): p. 378-90.
2. Kitanaka, C. and Y. Kuchino, Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ, 1999. 6(6): p. 508-15.
3. Benn, S.C. and C.J. Woolf, Adult neuron survival strategies--slamming on the brakes. Nat Rev Neurosci, 2004. 5(9): p. 686-700.
4. Krantic, S., et al., Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol, 2007. 81(3): p. 179-96.
5. Boujrad, H., et al., AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle, 2007. 6(21): p. 2612-9.
6. Vandenabeele, P., W. Declercq, and T.V. Berghe, Necrotic cell death and 'necrostatins': now we can control cellular explosion. Trends Biochem Sci, 2008. 33(8): p. 352-5.
7. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 2004. 3(3): p. 205-14.
8. Giorgio, M., et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol, 2007. 8(9): p. 722-8.
9. Burdon, R.H., D. Alliangana, and V. Gill, Hydrogen peroxide and the proliferation of BHK-21 cells. Free Radic Res, 1995. 23(5): p. 471-86.
10. Burdon, R.H., V. Gill, and D. Alliangana, Hydrogen peroxide in relation to proliferation and apoptosis in BHK-21 hamster fibroblasts. Free Radic Res, 1996. 24(2): p. 81-93.
11. Bladier, C., et al., Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ, 1997. 8(5): p. 589-98.
12. Davies, K.J., The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life, 1999. 48(1): p. 41-7.
13. Kim, B.Y., M.J. Han, and A.S. Chung, Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic Biol Med, 2001. 30(6): p. 686-98.
14. Day, R.M. and Y.J. Suzuki, Cell proliferation, reactive oxygen and cellular glutathione. Dose Response, 2005. 3(3): p. 425-42.
15. Martindale, J.L. and N.J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002. 192(1): p. 1-15.
16. Nindl. G, Hydrogen Peroxide - From Oxidative Stressor to Redox Regulator . Cellscience Reviews, 2004. 1(2)
17. Andersen, J.K., Oxidative stress in neurodegeneration: cause or consequence? Nat Med, 2004. 10 Suppl: p. S18-25.
18. Fatokun, A.A., T.W. Stone, and R.A. Smith, Oxidative stress in neurodegeneration and available means of protection. Front Biosci, 2008. 13: p. 3288-311.
19. Wang, X., et al., The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J, 1998. 333 ( Pt 2): p. 291-300.
20. Yoshizumi, M., et al., Ebselen attenuates oxidative stress-induced apoptosis via the inhibition of the c-Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells. Br J Pharmacol, 2002. 136(7): p. 1023-32.
21. Nair, V.D., et al., Early single cell bifurcation of pro- and antiapoptotic states during oxidative stress. J Biol Chem, 2004. 279(26): p. 27494-501.
22. Fujita, Y., et al., Pramipexole protects against H2O2-induced PC12 cell death. Naunyn Schmiedebergs Arch Pharmacol, 2006. 372(4): p. 257-66.
23. Wu, X.J., et al., Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin, 2007. 28(8): p. 1123-8.
24. Zhuang, S., J.T. Demirs, and I.E. Kochevar, p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem, 2000. 275(34): p. 25939-48.
25. Greene, L.A., Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol, 1978. 78(3): p. 747-55.
26. Sofroniew, M.V., C.L. Howe, and W.C. Mobley, Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci, 2001. 24: p. 1217-81.
27. Rui, L., et al., Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol, 1997. 17(11): p. 6633-44.
28. Qian, X., et al., Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron, 1998. 21(5): p. 1017-29.
29. Rui, L., J. Herrington, and C. Carter-Su, SH2-B is required for nerve growth factor-induced neuronal differentiation. J Biol Chem, 1999. 274(15): p. 10590-4.
30. Herrington, J., et al., SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem, 2000. 275(17): p. 13126-33.
31. Zhang, Y., et al., Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci, 2006. 119(Pt 8): p. 1666-76.
32. Wang, X., et al., SH2-B is a positive regulator of nerve growth factor-mediated activation of the Akt/Forkhead pathway in PC12 cells. J Biol Chem, 2004. 279(1): p. 133-41.
33. Chen, L. and C. Carter-Su, Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol, 2004. 24(9): p. 3633-47.
34. Maures, T.J., J.H. Kurzer, and C. Carter-Su, SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab, 2007. 18(1): p. 38-45.
35. Chen, L., et al., SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Mol Endocrinol, 2008. 22(2): p. 454-76.
36. Huang, H. and D.J. Tindall, Dynamic FoxO transcription factors. J Cell Sci, 2007. 120(Pt 15): p. 2479-87.
37. Van der Horst, A. and B.M. Burgering, Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol, 2007. 8(6): p. 440-50.
38. Birkenkamp, K.U. and P.J. Coffer, FoxO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol, 2003. 171(4): p. 1623-9.
39. Medema, R.H., et al., AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature, 2000. 404(6779): p. 782-7.
40. Kajihara, T., et al., Differential expression of FoxO1 and FoxO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol, 2006. 20(10): p. 2444-55.
41. Maiese, K., Z.Z. Chong, and Y.C. Shang, OutFoxOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med, 2008. 14(5): p. 219-27.
42. Tang, E.D., et al., Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem, 1999. 274(24): p. 16741-6.
43. Burgering, B.M. and G.J. Kops, Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 2002. 27(7): p. 352-60.
44. Burgering, B.M. and R.H. Medema, Decisions on life and death: FoxO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol, 2003. 73(6): p. 689-701.
45. Van Der Heide, L.P., M.F. Hoekman, and M.P. Smidt, The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J, 2004. 380(Pt 2): p. 297-309.
46. Barthel, A., D. Schmoll, and T.G. Unterman, FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab, 2005. 16(4): p. 183-9.
47. Carter, M.E. and A. Brunet, FoxO transcription factors. Curr Biol, 2007. 17(4): p. R113-4.
48. Burgering, B.M., A brief introduction to FoxOlogy. Oncogene, 2008. 27(16): p. 2258-62.
49. Brenkman, A.B., et al., Mdm2 induces mono-ubiquitination of FoxO4. PLoS ONE, 2008. 3(7): p. e2819.
50. Essers, M.A., et al., FoxO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. Embo J, 2004. 23(24): p. 4802-12.
51. Hu, Y., et al., ERK phosphorylates p66shcA on Ser36 and subsequently regulates p27kip1 expression via the Akt-FoxO3a pathway: implication of p27kip1 in cell response to oxidative stress. Mol Biol Cell, 2005. 16(8): p. 3705-18.
52. Asada, S., et al., Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal, 2007. 19(3): p. 519-27.
53. Davila, D. and I. Torres-Aleman, Neuronal death by oxidative stress involves activation of FoxO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell, 2008. 19(5): p. 2014-25.
54. Calnan, D.R. and A. Brunet, The FoxO code. Oncogene, 2008. 27(16): p. 2276-88.
55. Yang, J.Y., et al., ERK promotes tumorigenesis by inhibiting FoxO3a via MDM2-mediated degradation. Nat Cell Biol, 2008. 10(2): p. 138-48.
56. van der Horst, A., et al., FoxO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol, 2006. 8(10): p. 1064-7
57. Taylor, J.M. and P.J. Crack, Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol, 2004. 31(7): p. 397-406.
58. Calnan DR. and A. Brunet, The FoxO code. Oncogene, 2008. 27: p. 2276–2288.
59. Kaestner, K.H., W. Knochel, and D.E. Martinez, Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev, 2000. 14(2): p. 142-6.
60. Nakamura, T. and K. Sakamoto, Forkhead transcription factor FoxO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol, 2008. 281(1-2): p. 47-55.
61. Keita T., et al., Stat3 confers resistance against hypoxia/reoxygenation-induced oxidative injury in hepatocytes through upregulation of Mn-SOD. Journal of Hepatology, 2004. 41: p. 957-965.
62. Lin, W. F., et al., SH2B1□ enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal, 2009. 21: p. 1060-1072.
63. Catherine B., Christopher E H. and P Brigitte, FoxO3a induces motoneuron death through the Fas pathway in cooperation with JNK. BMC Neuroscience, 2004. 5: p. 48.
64. Imada K. and W.J. Leonard, The Jak-STAT pathway. Mol Immunol, 2000. 37: p. 1-11.
65. James E. and Jr. Darnell, STATs and Gene Regulation. Science, 1997. 277: p. 1630–1635.
66. Stephanou A., et al., Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ, 2000. 7: p. 329–330.
67. Yu H. M., et al., Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis, 2006. 11: p. 931-941.
68. Marcin K., et al., Akt ModulatesSTAT3-mediated Gene Expression a through FKHR(FoxO1a) -dependent Mechanism. JBC, 2003. 278(7): p. 5242-5249.
69. Long C., et al., Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation MAPK pathway. The International Journal of Biochemistry & Cell Biology, 2009(41): p. 1284-1295.
70. Regina M. D., et al., Cell proliferation, reactive oxygen and cellular glutathione. International hormesis Society, 1995. 3: p. 425-442.
71. Yao R. and Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 1995. 267: p. 2003–6.
72. Schneider A., et al., Nf-kappab is activated and promotes cell death in focal cerebral ischemia. Nat. Med, 1999. 5: p. 554–9.
73. Flohe L., et al., Redox regulation of NF-kappa B activation. Free Radic. Biol. Med, 1997. 22: p. 1115–26.
74. Clemens JA., et al., Drug-induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor-kappaB in rats. Stroke, 1998. 29: p. 677–82.
75. Datta SR, Brunet A, and ME. Greenberg, Cellular survival: A play in three akts. Genes Dev, 1999. 13: p. 2905–27.
76. James W., et al., Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology & Medicine, 2009. 47: p. 1304–1309.