簡易檢索 / 詳目顯示

研究生: 黃柏偉
Bo-Wei Huang
論文名稱: FePdAuPt鐵磁性記憶合金塊材研究
指導教授: 胡塵滌
口試委員: 吳錫侃
李三保
楊聰仁
胡塵滌
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 麻田散相磁晶體異向性磁伸縮值形狀記憶效應
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Fe70Pd25Au5高相變化溫度特性為基礎,用元素Pt去取代部分或全部元素Au,提升試片的磁晶體異向性,觀察其效應。合金成分固定Fe為70at%、Pd為25at%,Pt與Au合計含量為5at%。製作Fe70Pd25Au(5-x)Ptx (x = 0、0.5、1、5) 三元和四元合金塊材,做下列比較與探討 : 生成bct麻田散相的能力(包括溫度誘發bct相與應力誘發bct相)、改變相變化溫度,並分析各項基本性質如微結構、磁性質、磁伸縮值、雙向形狀記憶效應的變化。
    用冷輥壓製備塊材試片,發現Fe70Pd25Au(5-x)Ptx (x = 0、0.5、1、5) 三元和四元合金塊材均展現極佳的延展性。
    熱機處理後的塊材試片中,A4.5P0.5-TMT1和A4P1-TMT1在室溫下結構部分為熱彈性fct麻田散相,P5-TMT1在室溫下結構為fcc母相,顯示添加Pt取代Au不會引起二次相的析出和非熱彈性bct麻田散相的生成,但使合金相變化溫度下降,並使晶格常數比值(c/a) ratio上升。
    Fe-Pd-Au(Pt)三元合金A5和P5經過77K與2K低溫處理,都沒有溫度誘發非熱彈性bct麻田散相的生成;而Fe-Pd-Au-Pt四元合金A4.5P0.5和A4P1經過相同低溫處理,卻有非熱彈性bct麻田散相的生成。另外發現添加Pt能有效抑制合金中應力誘發bct麻田散相生成。
    磁性質部分,證實Pt能提升試片的磁晶體異向性,而飽和磁化量以P5最高;外加磁場10 kOe、θ=90度時,磁伸縮值以A4.5P0.5的-636.6 ppm最高。
    形狀記憶效應方面,添加Pt會增強合金中的固溶強化,使得雙向形狀記憶效應的回復率下降。


    目錄 第一章 緒論 10 1-1前言 10 1-2 研究目的 11 第二章 文獻回顧 12 2-1 鐵磁性形狀記憶合金 12 2-2 形狀記憶效應 12 2-3 磁伸縮[22, 23] 15 2-4 鐵磁性形狀記憶效應 18 2-5 鐵磁形狀記憶合金的應用 21 2-6 Fe-Pd形狀記憶合金文獻回顧 21 2-7 Fe-Pd合金製程文獻回顧 22 2-8 Fe-Pd形狀記憶合金相變化文獻回顧 22 2-9 形狀記憶效應 27 2-10 磁性質與磁伸縮(鐵磁形狀記憶效應) 28 2-11 添加第三元素的文獻回顧 29 2-12 Fe-Pd理論計算文獻回顧 34 第三章 實驗步驟及方法 36 3-1 試片製備 36 3-1-1 合金鑄錠熔煉 37 3-1-2 熱鍛造 38 3-1-3 熱機處理(Thermal-Mechanical Treatment , TMT) 38 3-2 成份分析 39 3-3 熱示差掃描卡量計(Differential Scanning Calormetry )量測 39 3-4 結構分析及觀察 40 3-4-1 室溫X-ray繞射分析 40 3-4-2 變溫X-ray繞射分析 40 3-4-3 光學顯微鏡(Optical Microscope , OM)顯微結構觀察 42 3-5 磁性質量測 42 3-6 磁伸縮量測 43 3-7 形狀記憶效應測試 44 3-8 儀器與量測原理 45 3-8-1 X光繞射儀 (X-Ray Diffractometer) 45 3-8-2 熱示差掃描卡量計 (Differential Scanning Calormetry )[83] 46 3-8-3超導量子干涉儀(Superconducting Quantum Interference Devices,SQUID) 46 3-8-4 應變規(Strain Gauge) 46 第四章 結果與討論 48 4-1 試片代號介紹 48 4-2 試片基本性質研究 48 4-2-1 ICP-MS (Inductively Coupled Plasma Mass Spectrometry)成份分析 48 4-2-2 室溫X-Ray繞射分析 49 4-2-3 變溫X-Ray繞射分析 51 4-2-4 晶格常數與(c/a)比值討論 54 4-2-5 光學顯微鏡室溫金相觀察 57 4-2-6 DSC熱分析 60 4-2-7 相變化溫度探討 64 4-3 溫度誘發bct相變化研究 66 4-4 應力誘發bct相變化研究 71 4-5 延展性研究 74 4-6 磁性質研究 76 4-6-1 磁通量研究 (SQUID Method) 76 4-6-2 磁化量對溫度循環研究 (SQUID Method) 80 4-6-3 磁致伸縮研究 88 4-7 形狀記憶效應研究 93 第五章 結論 97 第六章 參考文獻 99

    [1] L. C. Chang and T. A. Read, "Plastic Deformation and Diffusionless Phase Change in Metal. The Gold-Cadmium Beta Phase," Trans. A.I.M.E., vol. 189, pp. 47-52, 1951.
    [2] C. M. Wayman, "Some Applications of Shape-memory Alloys," Journal of Metals, vol. 32, pp. 129-137, 1980.
    [3] M. Shuichi and O. Kazuhiro, "Development of Shape Memory Alloys," ISIJ International, vol. 29, pp. 353-377, 1989.
    [4] L. M. Schetky, "Shape Memory Alloys," Scientific American, vol. 241, pp. 74-82, 1979.
    [5] V. V. Kokorin and M. Wuttig, "Magnetostriction in ferromagnetic shape memory alloys," Journal of Magnetism and Magnetic Materials, vol. 234, pp. 25-30, 2001.
    [6] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, "Large magnetic-field-induced strains in Ni2MnGa single crystals," Applied Physics Letters, vol. 69, pp. 1966-1968, 1996.
    [7] T. Kakeshita, K.Shimizu, S.Funada, and M.Date, "Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys," Transactions of the JAPAN Institute of Metals, vol. 25, pp. 837-844, 1984.
    [8] Y. Furuya, N. W. Hagood, H. Kimura, and T. Watanabe, "Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6at%Pd Alloy," Mater. Trans. JIM (Jpn Inst Met), vol. 39, No.12, pp. 1248-1254, 1998.
    [9] T. Edler, S. Hamann, A. Ludwig, and S. G. Mayr, "Reversible fcc ↔ bcc transformation in freestanding epitaxially grown Fe–Pd ferromagnetic shape memory films," Scripta Materialia, vol. 64, pp. 89-92, 2011.
    [10] T. Edler and S. G. Mayr, "Film Lift-Off from MgO: Freestanding Single Crystalline Fe–Pd Films Suitable for Magnetic Shape Memory Actuation – and Beyond," Advanced Materials, vol. 22, pp. 4969-4972, 2010.
    [11] T. Kakeshita and K. Ullakko, "Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys," MRS Bulletin, vol. 27, pp. 105-109, 2002.
    [12] C. T. Hu, T. Goryczka, and D. Vokoun, "Effects of the spinning wheel velocity on the microstructure of Fe–Pd shape memory melt-spun ribbons," Scripta Materialia, vol. 50, pp. 539-542, 2004.
    [13] 余俊彥, "FePdPt, FePdAu 鐵磁性形狀記憶合金磁性質及形狀記憶效應研究," 國立清華大學碩士論文, vol. 3, pp. 47-120, 2005.
    [14] 王淳楷, "鐵鈀金三元鐵磁性形狀記憶合金塊材研究," 國立清華大學碩士論文, vol. 4, pp. 47-97, 2011.
    [15] 簡孜芸, "添加第三元素金對BCT麻田散相在鐵鈀鐵磁性記憶合金的影響," 國立清華大學碩士論文, vol. 4, pp. 70-115, 2012.
    [16] D. P. Dunne and C. M. Wayman, "Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features," Metallurgical Transactions, vol. 4, pp. 147-152, 1973.
    [17] T. A. Schroder and C. M. Wayman, "Two-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals," Scripta Metallurgica, vol. 11, pp. 225-230, 1977.
    [18] L. Delaey, R. V. Krishnan, H. Tas, and H. Warlimont, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 1 Structural and microstructural changes associated with the transformations," Journal of Materials Science, vol. 9, pp. 1521-1535, 1974.
    [19] R. V. Krishnan, L. Delaey, H. Tas, and H. Warlimont, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 2 Macroscopic Mechanical-Behavior," Journal of Materials Science, vol. 9, pp. 1536-1544, 1974.
    [20] H. Warlimont, L. Delaey, R. V. Krishnan, and H. Tas, "Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. Part 3 Thermodynamics and Kinetics " Journal of Materials Science, vol. 9, pp. 1545-1555, 1974.
    [21] 賴耿陽, "形狀記憶合金," 復漢出版社, vol. 1, pp. 1-44, 1999.
    [22] D. Gignoux and M. Schlenker, "MagnetismⅠ Fundamantals," vol. 3, 12, pp. 79-103, 351-396, 2002.
    [23] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, "Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions," Smart Mater. Struct., vol. 14, pp. 261-265, 2005.
    [24] 金重勳主編, "磁性技術手冊," vol. 31, pp. 28-419, 2002.
    [25] J. Cui, T. W. Shield, and R. D. James, "Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape-memory alloy," Acta Materialia, vol. 52, pp. 35-47, 2004.
    [26] K. Ullakko, J. K. Huang, R. C. O'Handley, and V. V. Kokorin, "Magnetically controlled shape memory effect in Ni2MnGa intermetallics," Scripta Materialia, vol. 36, pp. 1133-1138, 1997.
    [27] K. Ullakko, "Magnetically controlled shape memory alloys: A new class of actuator materials," Journal of Materials Engineering and Performance, vol. 5, pp. 405-409, 1996.
    [28] K. Tanaka, T. Ichitsubo, and M. Koiwa, "Effect of external fields on ordering of FePd," Materials Science and Engineering: A, vol. 312, pp. 118-127, 2001.
    [29] P. R. Aitchison, J. N. Chapman, V. Gehanno, I. S. Weir, M. R. Scheinfein, S. McVitie, and A. Marty, "High resolution measurement and modelling of magnetic domain structures in epitaxial FePd L10 films with perpendicular magnetisation," Journal of Magnetism and Magnetic Materials, vol. 223, pp. 138-146, 2001.
    [30] T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi, and F. Abe, "Theoretical investigation of L10-disorder phase equilibria in Fe–Pd alloy system," Journal of Alloys and Compounds, vol. 317–318, pp. 13-18, 2001.
    [31] L. Wang, Z. Fan, and D. E. Laughlin, "Trace analysis for magnetic domain images of L10 polytwinned structures," Scripta Materialia, vol. 47, pp. 781-785, 2002.
    [32] J. G. Ha, I. S. Chung, J. G. Kang, H. W. An, J. H. Koh, S. M. Koo, Y. H. Cho, S. Y. Park, M. H. Jung, and J. G. Kim, "Structure and magnetic anisotropy in L10 ordered FePd thin films," Physica Status Solidi (a), vol. 204, pp. 4045-4048, 2007.
    [33] J. G. Kang, J. G. Ha, J. H. Koh, S. M. Koo, M. Kamiko, S. Mitani, Y. Sakuraba, K. Takanashi, S. T. Bae, and H. J. Yeom, "Atomic ordering and magnetic properties of polycrystalline L10-FePd dot arrays," Physica B: Condensed Matter, vol. 405, pp. 3149-3153, 2010.
    [34] T. Kakeshita and K. Ullakko, "Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys," MRS Bulletin, vol. 27, pp. 105-109, 2002.
    [35] J. Buschbeck, O. Heczko, A. Ludwig, S. Fahler, and L. Schultz, "Magnetic properties of epitaxial Fe--Pd films measured at elevated temperatures," Journal of Applied Physics, vol. 103, p. 07B334, 2008.
    [36] C. Bechtold, J. Buschbeck, A. Lotnyk, B. Erkartal, S. Hamann, C. Zamponi, L. Schultz, A. Ludwig, L. Kienle, S. Fähler, and E. Quandt, "Artificial Single Variant Martensite in Freestanding Fe70Pd30 Films Obtained by Coherent Epitaxial Growth," Advanced Materials, vol. 22, pp. 2668-2671, 2010.
    [37] M. Sugiyama, R. Oshima, and F. E. Fujita, "Martensitic-Transformation in the Fe-Pd Alloy System," Transactions of the JAPAN Institute of Metals, vol. 25, pp. 585-592, 1984.
    [38] R. Oshima, "Successive Martensitic Transformations in Fe-Pd Alloys," Scripta Metallurgica, vol. 15, pp. 829-833, 1981.
    [39] K. Seki, H. Kura, T. Sato, and T. Taniyama, "Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd," Journal of Applied Physics, vol. 103, p. 063910, 2008.
    [40] J. Felten, T. Kinkus, A. Reid, G. Olson, and J. Cohen, "Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd alloys," Metallurgical and Materials Transactions A, vol. 28, pp. 527-536, 1997.
    [41] M. Sugiyama, R. Oshima, and F. E. Fujita, "Mechanism of FCC-FCT Thermoelastic Martensite Transformation in Fe-Pd Alloys," Transactions of the JAPAN Institute of Metals, vol. 27, pp. 719-730, 1986.
    [42] J. Cui and R. D. James, "Study of Fe3Pd and related alloys for ferromagnetic shape memory," IEEE Transactions on Magnetics, vol. 37, pp. 2675-2677, 2001.
    [43] T. Sohmura, R. Oshima, and F. E. Fujita, "Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy," Scripta Metallurgica, vol. 14, pp. 855-856, 1980.
    [44] E. C. Bain, "The nature of martensite," Trans AIME Steel Div, vol. 70, p. 25, 1924.
    [45] J. Buschbeck, I. Opahle, M. Richter, U. K. Rößler, P. Klaer, M. Kallmayer, H. J. Elmers, G. Jakob, L. Schultz, and S. Fähler, "Full Tunability of Strain along the fcc-bcc Bain Path in Epitaxial Films and Consequences for Magnetic Properties," Physical Review Letters, vol. 103, p. 216101, 2009.
    [46] T. Kubota, T. Okazaki, H. Kimura, T. Watanabe, M. Wuttig, and Y. Furuya, "Effect of rapid solidification on giant magnetostriction in ferromagnetic shape memory iron-based alloys," Sci. Technol. Adv. Mater., vol. 3, pp. 201-207, 2002.
    [47] S. Inoue, K. Inoue, K. Koterazawa, and K. Mizuuchi, "Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering," Materials Science and Engineering: A, vol. 339, pp. 29-34, 2003.
    [48] S. Inoue, K. Inoue, S. Fujita, and K. Koterazawa, "Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering," Materials Transactions, vol. 44, pp. 298-304, 2003.
    [49] D. Vokoun and C. T. Hu, "Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons," Scripta Materialia, vol. 47, pp. 453-457, 2002.
    [50] D. Vokoun and C. T. Hu, "Improvement of shape memory characteristics in Fe–Pd melt-spun shape memory ribbons," Journal of Alloys and Compounds, vol. 346, pp. 147-153, 2002.
    [51] R. D. James and M. Wuttig, "Magnetostriction of martensite," Philosophical Magazine A, vol. 77, pp. 1273-1299, 1998/05/01 1998.
    [52] J. Koeda, Y. Nakamura, T. Fukuda, T. Kakeshita, T. Takeuchi, and K. Kishio, "Giant magnetostriction in Fe-Pd alloy single crystal exhibiting martensitic transformation," Trans. Mat. Res. Soc. Jap., vol. 26, pp. 215-217, 2001.
    [53] T. Kubota, T. Okazaki, Y. Furuya, and T. Watanabe, "Large magnetostriction in rapid-solidified ferromagnetic shape memory Fe–Pd alloy," Journal of Magnetism and Magnetic Materials, vol. 239, pp. 551-553, 2002.
    [54] H. Y. Yasuda, N. Komoto, M. Ueda, and Y. Umakoshi, "Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys," Sci. Technol. Adv. Mater., vol. 3, pp. 165-169, 2002.
    [55] R. A. Stern, S. D. Willoughby, A. Ramirez, J. M. MacLaren, J. Cui, Q. Pan, and R. D. James, "Electronic and structural properties of Fe3Pd--Pt ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 91, pp. 7818-7820, 2002.
    [56] T. Wada, T. Tagawa, and M. Taya, "Martensitic transformation in Pd-rich Fe–Pd–Pt alloy," Scripta Materialia, vol. 48, pp. 207-211, 2003.
    [57] V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, M. A. González, and J. A. Rodríguez-Velamazán, "Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys," Acta Materialia, vol. 57, pp. 4224-4232, 2009.
    [58] S. U. Jen, Y.-T. Chen, T. L. Tsai, and Y. C. Lin, "Magnetostrictive strains in polycrystalline FePdRh alloy," Journal of Applied Physics, vol. 103, pp. 07B902-07B902-3, 2008.
    [59] Y.-C. Lin and H.-T. Lee, "Magnetostriction and magnetic structure in annealed recrystallization of strain-forged ferromagnetic shape memory Fe-Pd-Rh alloys," Journal of Applied Physics, vol. 107, pp. 09D312-09D312-3, 2010.
    [60] H. Ishikawa, Y. Sutou, T. Omori, K. Oikawa, K. Ishida, A. Yoshikawa, R. Y. Umetsu, and R. Kainuma, "Pd-In-Fe shape memory alloy," Applied Physics Letters, vol. 90, p. 261906, 2007.
    [61] 吳立偉, " FePdIn鐵磁性形狀記憶合金之研究," 國立清華大學碩士論文, vol. 3, pp. 45-91, 2008.
    [62] S. Hamann, M. E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S. G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fähler, P. Entel, and A. Ludwig, "The ferromagnetic shape memory system Fe–Pd–Cu," Acta Materialia, vol. 58, pp. 5949-5961, 2010.
    [63] 陳雨澤, " FePdCu鐵磁性形狀記憶合金均質化之研究," 國立清華大學碩士論文, vol. 3, pp. 39-114, 2010.
    [64] K. Tsuchiya, T. Nojiri, H. Ohtsuka, and M. Umemoto, "Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys," Materials Transactions, vol. 44, No.12, pp. 2499-2502, 2003.
    [65] Y.-C. Lin, C.-F. Lin, J.-B. Yang, and H.-T. Lee, "Microstructures and magnetostriction of two-phase Fe66-Pd30-Ni4 high-temperature ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 109, pp. 07A912-07A912-3, 2011.
    [66] 吳韋民, "鐵磁性記憶合金FePdAg與FePdAu物理特性與形狀記憶效應研究," 國立清華大學碩士論文, vol. 3, pp. 47-88, 2006.
    [67] 蔡豐鍵, " FePdSn,FePdCu鐵磁性形狀記憶合金性質與形狀記憶效應研究," 國立清華大學碩士論文, vol. 3, pp. 47-93, 2007.
    [68] 王怡文, "Fe-Pd 鐵磁性形狀記憶合金添加第三元素之研究," 國立清華大學碩士論文, vol. 3, pp. 39-64, 2004.
    [69] R. C. O'Handley, "Model for strain and magnetization in magnetic shape-memory alloys," Journal of Applied Physics, vol. 83, pp. 3263-3270, 1998.
    [70] S. J. Murray, R. C. O'Handley, and S. M. Allen, "Model for discontinuous actuation of ferromagnetic shape memory alloy under stress," Journal of Applied Physics, vol. 89, pp. 1295-1301, 2001.
    [71] N. I. Glavatska, A. A. Rudenko, I. N. Glavatskiy, and V. A. L'Vov, "Statistical model of magnetostrain effect in martensite," Journal of Magnetism and Magnetic Materials, vol. 265, pp. 142-151, 2003.
    [72] A. A. Likhachev and K. Ullakko, "Quantitative model of large magnetostrain effect in ferromagnetic shapell memory alloys," Eur. Phys. J. B, vol. 14, pp. 263-267, 2000/03/01 2000.
    [73] P. Mullner, V. A. Chernenko, M. Wollgarten, and G. Kostorz, "Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields," Journal of Applied Physics, vol. 92, pp. 6708-6713, 2002.
    [74] A. N. Bogdanov, A. DeSimone, S. Müller, and U. K. Rößler, "Phenomenological theory of magnetic-field-induced strains in ferromagnetic shape-memory materials," Journal of Magnetism and Magnetic Materials, vol. 261, pp. 204-209, 2003.
    [75] D. I. Paul, J. Marquiss, and D. Quattrochi, "Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys," Journal of Applied Physics, vol. 93, pp. 4561-4565, 2003.
    [76] A. Desimone and R. D. James, "Energetics of magnetoelastic domains in ferromagnetic shape memory alloys," J. Phys. IV France, vol. 112, pp. 969 - 972, 2003.
    [77] N. Creton and L. Hirsinger, "Rearrangement surfaces under magnetic field and/or stress in Ni–Mn–Ga," Journal of Magnetism and Magnetic Materials, vol. 290–291, Part 2, pp. 832-835, 2005.
    [78] B. Kiefer and D. C. Lagoudas, "Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys," Philosophical Magazine, vol. 85, pp. 4289-4329, 2005.
    [79] J. Kiang and L. Tong, "Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crytals," Journal of Magnetism and Magnetic Materials, vol. 292, pp. 394-412, 2005.
    [80] I. Opahle, K. Koepernik, U. Nitzsche, and M. Richter, "Jahn--Teller-like origin of the tetragonal distortion in disordered Fe--Pd magnetic shape memory alloys," Applied Physics Letters, vol. 94, p. 072508, 2009.
    [81] I. Opahle, K. Koepernik, and H. Eschrig, "Full-potential band-structure calculation of iron pyrite," Physical Review B, vol. 60, pp. 14035-14041, 1999.
    [82] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, pp. 6671-6687, 1992.
    [83] http://www.techmaxasia.com/articles/detail/1196063383, TechMax Technical Co., Ltd., Nov. 2003.
    [84] 施志超, "RT2材料的磁伸縮與磁性研究," 國立清華大學博士論文, vol. 2, pp. 7-29, 2002.
    [85] T. Okazaki, H. Nakajima, and Y. Furuya, "Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon under Tensile Stress," Materials Transactions, vol. 44, pp. 665-668, 2003.
    [86] F. Xiao, T. Fukuda, T. Kakeshita, and K. Takahashi, "Concentration dependence of FCC to FCT martensitic transformation in Fe–Pd alloys," Journal of Alloys and Compounds, 2012.
    [87] H. Kato, Y. Liang, and M. Taya, "Stress-induced FCC/FCT phase transformation in Fe–Pd alloy," Scripta Materialia, vol. 46, pp. 471-475, 2002.
    [88] R.L. Wang, J.B. Yan, H.B. Xiao, L.S. Xu, V.V. Marchenkov, L.F. Xu, and C.P. Yanga, “Effect of electron density on the martensitic transition in Ni–Mn–Sn alloys,” Journal of Alloys and Compounds, vol. 509, pp. 6834-6837, 2011.
    [89] C. F. Lin, and J. B. Yang, "Grain size reduction and magnetic property of Fe-Pd-Rh alloys," IEEE TRANSACTIONS ON MAGNETICS, vol. 45, pp. 0018-9464, 2009.
    [90] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, and T. Mori, "Structural change and straining in Fe–Pd polycrystals by magnetic field," Materials Science and Engineering: A, vol. 361, pp. 75-82, 2003.
    [91] V. Sánchez-Alarcos, J. I. Pérez-Landazábal, and V. Recarte, "Effect of Co and Mn Doping on the Martensitic Transformations and Magnetic Properties of Fe-Pd Ferromagnetic Shape Memory Alloys," Materials Science Forum, vol. 635, pp. 103-110, 2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE