簡易檢索 / 詳目顯示

研究生: 林進裕
Lin, Chin-Yu
論文名稱: 以桿狀病毒工程改造間葉幹細胞修復紐西蘭白兔股骨典型範圍缺陷
Baculovirus-Engineered Mesenchymal Stem Cells Heal the Critical-Sized Femoral Segmental Bone Defects in Rabbits
指導教授: 胡育誠
Hu, Yu-Chen
口試委員: 閻紫宸
Yen, Tzu-Chen
楊台鴻
Young, Tai-Hong
張鑑中
胡育誠
張毓翰
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 156
中文關鍵詞: 桿狀病毒組織工程骨缺陷修復基因治療
外文關鍵詞: baculovirus, tissue engineering, bone defect regeneration, gene therapy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大範圍的骨缺陷通常發生於外傷或進行癌症外科手術切除之後,造成許多外觀缺陷與行動上的不便,據統計在美國每年花費150億美金以上於骨修復相關的治療。本研究首先探討桿狀病毒工程改造之骨髓間葉幹細胞(bone marrow derived stem cells, BMSCs)是否可以修復大範圍骨缺陷。實驗以表現第二型骨型態蛋白(BMP2)或血管內皮細胞生長因子(VEGF)之重組桿狀病毒轉導紐西蘭兔BMSCs,並共同移植入紐西蘭白兔骨股典型範圍缺陷(10 mm)。X-ray結果顯示,經桿狀病毒工程改造之BMSCs不僅可於植入2週時間後,形成新骨連結骨缺陷;並且在植入4週時間後,所有實驗動物皆完成骨缺陷修復。由正子斷層掃描、電腦斷層掃描、組織切片化學染色與機械應力測試分析,亦發現與其他對照組比較,共同植入表現BMP2與VEGF的BMSCs可顯著促進骨修復與應力承受特性,其骨修復的同時亦伴隨著旺盛的血管新生。此外,從脂肪分離幹細胞(adipose derived stem cells, ASCs)比從骨髓分離幹細胞容易,但是曾有文獻報導ASCs無法使用於股骨大面積缺損之修復。我們假設若能延長生長因子表現,可能可以進一步改善ASCs應用於硬骨的修復。因此我們建構一新型的混成型長效桿狀病毒,證實在轉導ASCs後可切割重組桿狀病毒基因體形成細胞內質體,並延長轉殖基因表現時間至28天以上。此外,應用此混成型桿狀病毒改質ASCs可成功修復紐西蘭兔股骨大面積缺損。相較於短暫表現BMP2/VEGF的組別,於ASCs移植後12週僅完成40%動物股骨缺損修補。長效表現BMP2/VEGF的組別,於術後8週,可100%完成動物股骨缺損修補。最後,我們更進一步探討免疫細胞(如巨噬細胞、CD4+、CD8+ T cells)浸潤移植部位的情形,以及週邊血液淋巴球細胞、脾臟細胞對桿狀病毒轉導之ASCs的免疫反應。確認以混成型桿狀病毒改質之ASCs,在移植紐西蘭兔股骨缺損後,不會誘發嚴重之免疫排斥與產生抗原專一性細胞免疫反應。本研究釐清經由桿狀病毒轉導及轉殖基因表現後,ASCs的免疫特性是否有所改變,對於桿狀病毒是否能成為主流基因載體非常重要。


    Massive segmental bony defects often occur following trauma or tumor resection which may result in non-union and even physical impairment, and over 15 billion dollars are spent annually in the US for the bone regeneration related therapies. Recently, mesenchymal stem cells (MSCs)-based therapy and virus-based gene therapy have converged and hold promise in assisting and accelerating bone healing. To explore whether BMSCs engineered by baculovirus can heal large bone defects, the New Zealand White (NZW) rabbit BMSCs were transduced with the BMP2-expressing baculovirus or VEGF-expressing baculovirus, co-seeded to scaffolds and co-implanted into critical-sized (10 mm) femoral segmental defects in NZW rabbits. X-ray analysis revealed that the baculovirus-engineered BMSCs not only bridged the defects at as early as week 2, but also healed the defects in 100% of rabbits at week 4. When compared with other control groups, the BMP2/VEGF-expressing BMSCs remarkably enhanced the segmental bone repair and mechanical properties, as evidenced by positron emission tomography (PET), micro-computed tomography (□CT), histochemical staining and biomechanical testing. The immunohistochemical staining further attested that the ameliorated bone healing concurred with the augmented angiogenesis. Additionally, adipose-derived stem cells (ASCs) also hold great promise for tissue regeneration because, unlike BMSCs requiring bone marrow harvest, ASCs are easy to isolate through liposuction and are more applicable in the future clinical application. But, ASCs were reported to failed in femoral segmental bone defect healing. To solve this problem, we hypothesized that sustained expression of factors promoting osteogenesis (BMP2) and angiogenesis (VEGF) in ASCs may provide continuous stimuli to augment the bone healing. Therefore we developed a hybrid baculovirus system and attested the ASCs transduced with the hybrid baculovirus can leading to cassette excision off the baculovirus genome, enabling transgene persistence in episomal form and prolonging the expression to >28 days. Compared with the ASCs engineered by the conventional baculovirus transiently expressing BMP2/VEGF only healed the critical-size segmental femoral bone defects in 40% of rabbits at 12 weeks post-implantation, whereas ASCs engineered by the hybrid vectors persistently expressing BMP2/VEGF healed the critical-size defects in 100% of animals in 8 weeks. Thereby attesting our hypothesis that persistent BMP2/VEGF expression is essential in use of ASCs to treating massive segmental defects necessitating sustained stimuli. Moreover, the in vivo immunological evaluations are evaluated after the hybrid baculovirus-transduced ASCs are implanted into the femoral critical defects. The activation of immune cells (e.g. macrophage and T cells) are observed by immuno histological staining and the recipient lymphocytes against donor-ASCs are evaluated by spleen derived mixed lymphocyte cytotoxic assays and peripheral blood differential count. These data demonstrated that the transplantation of ASCs engineered by hybrid baculovirus will not elicit severe immune rejection and antigen specific cellular immune response. These in vivo experiments will shed light on whether baculovirus transduction and transgene expression trigger unwanted immune responses and change immunocharacteristics of ASCs in vivo, which will benefit future baculovirus-mediated gene therapy.

    第一章 序論 1 第二章 文獻回顧 3 2-1 骨組織工程簡介 3 2-1-1骨骼系統之重要性與常見傷害 3 2-1-2 骨骼的組織與組成 4 2-1-3 骨細胞與骨骼重建機制 5 2-1-4 骨組織工程的發展 7 2-2 幹細胞的特性與在組織工程上之應用 8 2-3 基因治療 9 2-4 桿狀病毒表現系統 11 2-4-1 桿狀病毒之特性 11 2-4-2 桿狀病毒應用於組織工程 13 2-4-3 FLP/Frt重組系統 14 2-5 研究動機 15 第三章 材料與方法 22 3-1 重組桿狀病毒之建構與製備 22 3-1-1 昆蟲細胞培養 22 3-1-2 表現載體(donor plasmid)之建構 22 3-1-3 重組表現載體之轉置反應(transposition) (Bac-to-Bac system) 24 3-1-4 重組bacmid之分離 24 3-1-5 重組bacmid之轉染反應(transfection) (製備p0病毒) 25 3-1-6 基因重組桿狀病毒放大培養 25 3-1-7 病毒感染力價之定量(infectious titer) 26 3-2 紐西蘭白兔幹細胞分離培養 27 3-2-1紐西蘭白兔BMSCs分離培養 27 3-2-2 紐西蘭白兔ASCs分離培養 28 3-3 紐西蘭白兔BMSCs與ASCs之轉導(transduction) 29 3-3-1 基因重組桿狀病毒之轉導 29 3-3-2 流式細胞儀之分析 29 3-4 酵素免疫分析(ELISA)生長因子之含量 30 3-5基因重組桿狀病毒轉導BMSCs或ASCs後體外分化測試 31 3-5-1 Osteopontin 基因表現(qRT-PCR) 31 3-5-2 Alkaline phosphatase (ALP)表現分析 33 3-5-3 茜紅素(alizarin red)染色分析 34 3-5-4 鈣沉積定量 35 3-5-5 Bac-CV轉導BMSCs之培養液刺激血管新生 35 3-6 細胞載體製備與測試 37 3-6-1 PLGA載體製備 37 3-6-2 3D培養生長因子分泌測試 37 3-6-3動物試驗所需之載體製備 38 3-7 紐西蘭白兔股骨critical defect 模型建立與載體植入程序 39 3-8 Non-invasive骨缺損修復評估 40 3-8-1 X-ray攝影評估骨缺陷修復情況 40 3-8-2 正子斷層掃描評估骨缺陷位置代謝情況 40 3-9 Critical defect的骨再生與血管重建評估 41 3-9-1 電腦斷層掃瞄(Computed Tomography, CT) 41 3-9-2 H&E染色 42 3-9-3 Critical defect血管新生評估-組織切片螢光免疫染色 42 3-10 Critical defect位置新生骨機械應力測試 43 3-11 紐西蘭兔脾臟細胞分離 43 3-12 混合型淋巴細胞毒殺試驗 45 3-13 統計學分析 46 第四章 結果與討論(I) 52 以桿狀病毒工程改質骨髓來源之幹細胞修復紐西蘭兔股骨典型範圍缺陷 4-1 基因重組桿狀病毒轉導紐西蘭白兔BMSCs效率 52 4-2 以Bac-CB轉導BMSCs並誘導往硬骨細胞分化 52 4-3 以Bac-CV轉導BMSCs並分析刺激血管新生能力 54 4-4 紐西蘭兔股骨缺陷動物模式與X-ray評估骨缺陷修復 55 4-5 骨缺陷修復過程中骨代謝活性分析 56 4-6 股骨修復情況與電腦斷層掃描分析 57 4-7 組織切片染色分析骨組織新生與血管新生 58 4-8 機械扭轉測試股骨修復情況 59 4-9 討論 59 第五章 結果與討論(II) 76 以新型長效表現型桿狀病毒工程改質ASCs修復紐西蘭兔股骨典型範圍缺陷 5-1 FLP/Frt系統媒介桿狀病毒基因體重組最佳化條件測試 77 5-2應用FLP/Frt系統之新型桿狀病毒延長轉殖基因表現 79 5-3以X-ray攝影方式評估活體動物股骨修復情況 81 5-4以PET/CT觀察活體動物骨組織代謝活性 81 5-5動物犧牲後的新生骨外觀及□CT評估 82 5-6組織學分析骨再生情形 83 5-7扭轉機械應力測試新生骨品質 84 5-8 討論 84 第六章 結果與討論(III) 96 長效型桿狀病毒工程改質ASCs修復股骨典型範圍缺陷之效率與免疫特性探討 6-1移植後採周邊血液分析血球分類計數 97 6-2移植後採周邊血液分析重組蛋白表現 99 6-3組織移植處之發炎反應觀察 100 6-4組織移植處之免疫細胞浸潤 101 6-5混合型淋巴細胞分析其抗原專一性 102 6-6 討論 103 第七章 結論與未來展望 112 7-1 移植動物產生抗人類BMP2 / VEGF抗體分析 113 7-2 同種異體移植間葉幹細胞追蹤 113 7-2-1 報導基因建構與穩定表現報導基因的幹細胞株選植 114 7-2-2 以SPECT分析骨缺陷修復動物內同種異體移植MSC量 114 7-2-3 組織切片分析移植幹細胞在動物體內的分布 115 7-3 較長術後時間觀察骨修復品質與組織癌化評估 115 7-3-1 電腦斷層掃描分析 116 7-3-2 新生骨組織生物力學測試 116 7-3-3 新生骨組織重整(bone remodeling)與骨吸收(bone resorption) 117 7-3-4 新生骨組織癌化評估 117 第八章 參考文獻 120 第九章 附件 130 9-1 參加研討會論文摘要 130 9-2 已發表於國際期刊之論文 138

    [1] Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990; 87:2220-4.
    [2] Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 2004; 32:136-47.
    [3] Kofron MD, Laurencin CT. Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 2006; 58:555-76.
    [4] Partridge KA, Oreffo RO. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng 2004; 10:295-307.
    [5] Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64:278-94.
    [6] Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29:244-55.
    [7] Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16:155-62.
    [8] Van Damme A, Chuah MK, Dell'accio F, De Bari C, Luyten F, Collen D, et al. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats. Haemophilia 2003; 9:94-103.
    [9] Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 2001; 3:857-66.
    [10] Hurwitz DR, Kirchgesser M, Merrill W, Galanopoulos T, McGrath CA, Emami S, et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 1997; 8:137-56.
    [11] Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1999; 1:121-33.
    [12] Asahara T, Kalka C, Isner JM. Stem cell therapy and gene transfer for regeneration. Gene Ther 2000; 7:451-7.
    [13] Kalfas IH. Principles of bone healing. Neurosurg Focus 2001; 10:E1.
    [14] Clemente CD. Gray's Anatomy of the Human Body. Lea & Febiger, 1985.
    [15] Huether SE, McCance KL. Understanding Pathophysiology. Mosby, 2004.
    [16] Frost HM. The skeletal intermediary organization. Metab Bone Dis Relat Res 1983; 4:281-90.
    [17] Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials 2001; 22:2581-93.
    [18] Risbud MV, Sittinger M. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 2002; 20:351-6.
    [19] Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001; 7:259-64.
    [20] Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 2005; 12:1171-9.
    [21] Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 1995; 92:10099-103.
    [22] Bilello JP, Cable EE, Myers RL, Isom HC. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther 2003; 10:733-49.
    [23] Kost TA, Condreay JP. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 2002; 20:173-80.
    [24] Boyce FM, Bucher NLR. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 1996; 93:2348-52.
    [25] Dwarakanath RS, Clark CL, McElroy AK, Spector DH. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 2001; 284:297-307.
    [26] Ma L, Tamarina N, Wang Y, Kuznetsov A, Patel N, Kending C, et al. Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 2000; 49:1986-91.
    [27] Leisy DJ, Lewis TD, Leong JA, Rohrmann GF. Transduction of cultured fish cells with recombinant baculoviruses. J Gen Virol 2003; 84:1173-8.
    [28] Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC. Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 2005; 7:860-8.
    [29] Ho YC, Lee HP, Hwang SM, Lo WH, Chen HC, Chung CK, et al. Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther 2006; 13:1471-9.
    [30] Hu YC. Baculoviral vectors for gene delivery: a review. Curr Gene Ther 2008; 8:54-65.
    [31] Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology 2005; 23:567-75.
    [32] Hu Y-C, Yao K, Wu T-Y. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2008; 7:363-71.
    [33] Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 2001; 8:846-54.
    [34] Chan Z-R, Lai C-W, Lee H-P, Chen H-C, Hu Y-C. Determination of the baculovirus transducing titer in mammalian cells. Biotechnol Bioeng 2006; 93:564-71.
    [35] Hu Y-C, Tsai C-T, Chung Y-C, Lu J-T, Hsu JT-A. Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb Technol 2003; 33:445-52.
    [36] Tsai C-T, Chan Z-R, Lu J-T, Yang D-G, Lo W-H, Hu Y-C. Factors influencing the production and storage of baculovirus for gene delivery: An alternative perspective from the transducing titer assay. Enzyme Microb Technol 2007; 40:1345-51.
    [37] Hsu C-S, Ho Y-C, Wang K-C, Hu Y-C. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 2004; 88:42-51.
    [38] Shen H-C, Lee H-P, Lo W-H, Yang D-G, Hu Y-C. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J Gene Med 2007; 9:470-8.
    [39] Lee H-P, Ho Y-C, Hwang S-M, Sung L-Y, Shen H-C, Liu H-J, et al. Variation of baculovirus-harbored transgene transcription among mesenchymal stem cell-derived progenitors leads to varied expression. Biotechnol Bioeng 2007; 97 649-55.
    [40] Lee H-P, Chen Y-L, Shen H-C, Lo W-H, Ho Y-C, Hu Y-C. Baculovirus transduction of rat articular chondrocytes: Roles of cell cycle. J Gene Med 2007; 9:33-43.
    [41] Chen H-C, Lee H-P, Ho Y-C, Sung M-L, Hu Y-C. Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 2006; 27:3154-62.
    [42] Sung L-Y, Lo W-H, Chiu H-Y, Chen H-C, Chuang C-K, Lee H-P, et al. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials 2007; 28:3437-47.
    [43] Chen H-C, Sung L-Y, Lo W-H, Chuang C-K, Wang Y-H, Lin J-L, et al. Combination of baculovirus-mediated BMP-2 expression and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther 2008; 15:309-17.
    [44] Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH, et al. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2009; 30:674-81.
    [45] Chuang C-K, Sung L-Y, Hwang S-M, Lo W-H, Chen H-C, Hu Y-C. Baculovirus as a new gene delivery vector for stem cells engineering and bone tissue engineering. Gene Ther 2007; 14:1417-24.
    [46] Chuang CK, Lin KJ, Lin CY, Chang YH, Yen TC, Hwang SM, et al. Xenotransplantation of Human Mesenchymal Stem Cells into Immunocompetent Rats for Calvarial Bone Repair. Tissue Engineering Part A 2010; 16:479-88.
    [47] Broach JR. The yeast plasmid 2 mu circle. Cell 1982; 28:203-4.
    [48] Broach JR, Hicks JB. Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 1980; 21:501-8.
    [49] Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 1996; 24:4256-62.
    [50] Lo W-H, Hwang S-M, Chuang C-K, Chen C-Y, Hu Y-C. Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther 2009; 17:658-66.
    [51] Chuang CK, Sung LY, Hwang SM, Lo WH, Chen HC, Hu YC. Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Therapy 2007; 14:1417-24.
    [52] Rada T, Reis RL, Gomes ME. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 2009; 15:113-25.
    [53] Tapp H, Hanley EN, Jr., Patt JC, Gruber HE. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood) 2009; 234:1-9.
    [54] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 2002; 13:4279-95.
    [55] Dupont KM, Sharma K, Stevens HY, Boerckel JD, Garcia AJ, Guldberg RE. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A 2010; 107:3305-10.
    [56] Hui JHP, Afizah H, Yang Z, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 2007; 13:659-66.
    [57] Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage 2005; 13:845-53.
    [58] O'Reilly DR, Miller LK, Luckow VA. Baculovirus expression vector: a laboratory manual. Oxford University Press, USA, 1993.
    [59] Hu YC, Tsai CT, Chang YJ, Huang JH. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 2003; 19:373-9.
    [60] Lo WH, Hwang SM, Chuang CK, Chen CY, Hu YC. Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther 2009; 17:658-66.
    [61] Zeng J, Du J, Zhao Y, Palanisamy N, Wang S. Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 2007; 25:1055-61.
    [62] Klein R, Ruttkowski B, Knapp E, Salmons B, Gunzburg WH, Hohenadl C. WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene 2006; 372:153-61.
    [63] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7.
    [64] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7:211-28.
    [65] Chen NX, O'Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 2002; 62:1724-31.
    [66] Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004; 22:560-7.
    [67] Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005; 20:2017-27.
    [68] Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002; 110:751-9.
    [69] Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999; 17:130-8.
    [70] Hsu WK, Sugiyama O, Park SH, Conduah A, Feeley BT, Liu NQ, et al. Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 2007; 40:931-8.
    [71] Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 2002; 85:737-46.
    [72] Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 2006; 27:4993-5002.
    [73] Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990; 143:420-30.
    [74] Castano-Izquierdo H, Alvarez-Barreto J, van den Dolder J, Jansen JA, Mikos AG, Sikavitsas VI. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J Biomed Mater Res A 2007; 82:129-38.
    [75] Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 2008; 42:921-31.
    [76] Lee SW, Padmanabhan P, Ray P, Gambhir SS, Doyle T, Contag C, et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res 2009; 27:295-302.
    [77] Bishop GB, Einhorn TA. Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 2007; 31:721-7.
    [78] Carofino BC, Lieberman JR. Gene therapy applications for fracture-healing. J Bone Joint Surg Am 2008; 90 Suppl 1:99-110.
    [79] Baltzer AW, Lattermann C, Whalen JD, Wooley P, Weiss K, Grimm M, et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 2000; 7:734-9.
    [80] Betz OB, Betz VM, Nazarian A, Pilapil CG, Vrahas MS, Bouxsein ML, et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg Am 2006; 88:355-65.
    [81] Betz VM, Betz OB, Glatt V, Gerstenfeld LC, Einhorn TA, Bouxsein ML, et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther 2007; 18:907-15.
    [82] Betz OB, Betz VM, Nazarian A, Egermann M, Gerstenfeld LC, Einhorn TA, et al. Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther 2007; 14:1039-44.
    [83] Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR. Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am 2009; 91:1073-83.
    [84] Gafni Y, Turgeman G, Liebergal M, Pelled G, Gazit Z, Gazit D. Stem cells as vehicles for orthopedic gene therapy. Gene Ther 2004; 11:417-26.
    [85] Li G, Corsi-Payne K, Zheng B, Usas A, Peng H, Huard J. The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation. Tissue Eng Part A 2009; 15:2123-33.
    [86] Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 2007; 13:1135-50.
    [87] Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 2003; 21:622-9.
    [88] Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen IS, Lieberman JR. In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 2006; 24:1709-21.
    [89] Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, et al. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 2004; 9:587-95.
    [90] Koh JT, Ge C, Zhao M, Wang Z, Krebsbach PH, Zhao Z, et al. Use of a stringent dimerizer-regulated gene expression system for controlled BMP2 delivery. Mol Ther 2006; 14:684-91.
    [91] Tsuchida H, Hashimoto J, Crawford E, Manske P, Lou J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res 2003; 21:44-53.
    [92] Evans CH, Ghivizzani SC, Robbins PD. Orthopedic gene therapy in 2008. Mol Ther 2009; 17:231-44.
    [93] Phillips JE, Gersbach CA, Garcia AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials 2007; 28:211-29.
    [94] Verma IM, Somia N. Gene therapy -- promises, problems and prospects. Nature 1997; 389:239-42.
    [95] Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ, et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005; 11:390-8.
    [96] Kochanek S, Clemens PR, Mitani K, Chen HH, Chan S, Caskey CT. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A 1996; 93:5731-6.
    [97] Ho YC, Chen HC, Wang KC, Hu YC. Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng 2004; 88:643-51.
    [98] Boulaire J, Zhao Y, Wang S. Gene expression profiling to define host response to baculoviral transduction in the brain. J Neurochem 2009; 109:1203-14.
    [99] Chen GY, Shiah HC, Su HJ, Chen CY, Chuang YJ, Lo WH, et al. Baculovirus Transduction of Mesenchymal Stem Cells Triggers the Toll-Like Receptor 3 Pathway. J Virol 2009; 83:10548-56.
    [100] Levi B, James AW, Nelson ER, Vistnes D, Wu B, Lee M, et al. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One 2010; 5:e11177.
    [101] Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32:370-3.
    [102] Lee SJ, Kang SW, Do HJ, Han I, Shin DA, Kim JH, et al. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 2010; 31:5652-9.
    [103] Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 2005; 11:120-9.
    [104] Chou YF, Zuk PA, Chang TL, Benhaim P, Wu BM. Adipose-derived stem cells and BMP2: part 1. BMP2-treated adipose-derived stem cells do not improve repair of segmental femoral defects. Connect Tissue Res 2011; 52:109-18.
    [105] Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 2007; 13:619-27.
    [106] Yla-Herttuala S, Mahonen AJ, Airenne KJ, Purola S, Peltomaa E, Kaikkonen MU, et al. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. Journal of Biotechnology 2007; 131:1-8.
    [107] Zeng J, Du J, Lin J, Bak XY, Wu C, Wang S. High-efficiency Transient Transduction of Human Embryonic Stem Cell-derived Neurons With Baculoviral Vectors. Mol Ther 2009.
    [108] Lin CY, Chang YH, Lin KJ, Yen TC, Tai CL, Chen CY, et al. The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials 2010; 31:3222-30.
    [109] Brenner W, Vernon C, Conrad EU, Eary JF. Assessment of the metabolic activity of bone grafts with (18)F-fluoride PET. Eur J Nucl Med Mol Imaging 2004; 31:1291-8.
    [110] Abe T, Kaname Y, Wen XY, Tani H, Moriishi K, Uematsu S, et al. Baculovirus Induces Type I Interferon Production through Toll-Like Receptor-Dependent and -Independent Pathways in a Cell-Type-Specific Manner. J Virol 2009; 83:7629-40.
    [111] Kondo S, Takahashi Y, Shiozawa S, Ichise H, Yoshida N, Kanegae Y, et al. Efficient sequential gene regulation via FLP-and Cre-recombinase using adenovirus vector in mammalian cells including mouse ES cells. Microbiology and Immunology 2006; 50:831-43.
    [112] Lee HP, Matsuura Y, Chen HC, Chen YL, Chuang CK, Abe T, et al. Baculovirus transduction of chondrocytes elicits interferon-alpha/beta and suppresses transgene expression. Journal of Gene Medicine 2009; 11:302-12.
    [113] Raymond CS, Soriano P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2007; 2:e162.
    [114] Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25:818-27.
    [115] Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25:750-60.
    [116] Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33:1402-16.
    [117] Chen CY, Wu HH, Chen CP, Chern SR, Hwang SM, Huang SF, et al. Biosafety Assessment of Human Mesenchymal Stem Cells Engineered by Hybrid Baculovirus Vectors. Mol Pharm 2011.
    [118] Beck NB, Sidhu JS, Omiecinski CJ. Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther 2000; 7:1274-83.
    [119] Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol 2003; 171:1133-9.
    [120] Hervas-Stubbs S, Rueda P, Lopez L, Leclerc C. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. J Immunol 2007; 178:2361-9.
    [121] Egermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, et al. Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 2006; 13:1290-9.
    [122] Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S. Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 2008; 36:1370-6.
    [123] Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J. Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther 2009; 17:369-72.
    [124] Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005; 106:4057-65.
    [125] Mitrecic D, Gajovic CN, Pochet R. Distribution, differentiation and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell Transplant 2010.
    [126] Hishizawa M, Kanda J, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Allografting for adult T-cell leukemia/lymphoma: A nationwide retrospective analysis. Blood 2007; 110:900a-a.
    [127] Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J 2008; 8:888-96.
    [128] Hsieh CH, Chen FD, Wang HE, Hwang JJ, Chang CW, Lee YJ, et al. Generation of destabilized herpes simplex virus type 1 thymidine kinase as transcription reporter for PET reporter systems in molecular genetic imaging. J Nucl Med 2008; 49:142-50.
    [129] Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [F-18] FHBG. Nature Protocols 2006; 1:3069-75.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE