簡易檢索 / 詳目顯示

研究生: 陳立舜
論文名稱: 液體透鏡光軸定心
指導教授: 葉哲良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 光軸定心封裝液透鏡液像差微結構表面邊界效應
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三種的光軸定心設計,也順利的找尋到目前較為合適的封裝液與透鏡液,並將兩者密度相等以忽略液體間浮力的影響,借此以輔助透鏡液的定型,讓液體透鏡之光軸定心得以達成,因此得以改善透鏡成像時,光軸偏移的像差問題。
    本論文將探討液體透鏡光軸定心的兩個大主軸,一個為光軸的定位問題,另一個為透鏡液的定型問題;因此本文將敘述封裝液與透鏡所符合的條件特性,並且逐步的刪除較不可能的找尋方向,以較重要的液體互溶性之特性做為首要的尋找條件,成功的找尋到利用多元醇做為透鏡液與光學油做為封裝液的目前最合適之搭配,並將兩者密度相等以忽略液體間浮力的影響,便可成功的達成液體透鏡定型問題;另外則是利用液滴於固體表面的特性:如微結構表面、邊界效應,做為光軸定心設計的理論背景,將液體透鏡成功製作完成,並探討不同的定心設計所達到的光軸定心能力,量測的方法為光線通過液體透鏡後的beam profile所偏移之角度,本論文量測的結果發現,利用邊界效應的定心結構可以有效的把光軸的偏移角度,從無定心結構的接近0.9° 下降至0.1°以下。


    目 錄 摘 要 I 目 錄 II 圖 目 錄 V 表 目 錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 6 1-2.1 幾何外形法 9 1-2.2 漸變電場定心法 12 1-3 主像差 13 1-4 研究動機與目標 17 1-5 全文架構 19 第二章 光軸定心理論 20 2.1 介面現象 20 2-1.1 微結構與蓮花效應 22 2-1.2 電濕潤效應 26 2-1.3 界面張力與液體展開 27 2-2 邊界效應 31 2-3 電場力 32 第三章 透鏡液與封裝液 33 3-1 液晶 38 3-2多元醇 41 第四章 液體透鏡光軸定心設計與製作 43 4-1 定心設計之理念 43 4-1.1 微結構定心設計理念 44 4-1.2 邊界效應定心設計理念 46 4-2 微機電製程 47 4-2.1 光罩設計 47 4-2.2 微結構定心設計之製作 49 4-2.3 邊界效應定心設計之製作 54 第五章 實驗架設與量測結果分析 55 5-1 液體透鏡之實務製作 55 5-2 定心量測之系統架設 59 5-3 無定心結構量測結果 61 5-4 有定心結構量測結果 66 5-4.1 微結構定心量測結果 66 5-4.2 邊界效應定心量測結果 67 第六章 結論與未來工作 73 6.1 結論 73 6.2 未來工作 75 參考文獻 76 附 錄 A 81 附 錄 B 82

    [1] 楊勝帆, “數位相機與相機手機商機之轉變,” 拓墣科技, 民國93
    [2] S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Advanced Material, vol. 15, pp. 940-943, 2003
    [3] C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Optics Express, vol. 14, pp. 4101-4106, 2006
    [4] E. Hecht, “Optics,” Addison-Wesley, San Francisco, 2002
    [5] 林宇仁,“微光學元件品質評鑑,”國立中央大學光電科學研究所, 民國90
    [6] B. Berge, C. Gabay, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proceedings of SPIE, France, pp. 8-9, 2002
    [7] L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” Proceedings of the 10th MicroOptics conference, Jena Germany, pp.1-3, 2004
    [8] S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, Vol. 85, pp. 1128-1130, 2004
    [9] S. Kuiper, B. H. W. Hendriks, R. A. Hayes, B. J. Feenstra, and J. M. E. Baken, “Electrowetting-based optics,” Proceedings of SPIE, vol. 5908, pp. 1-7, 2005
    [10] T. R.-Carmes, S. Palmier, R. A. Hayes, and J.M. Schlangen, “The effect of the oil / water interfacial tension on electrowetting driven fluid motion,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 267, pp. 1-3, 2005
    [11] B. Berge, and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E, vol. 3, pp. 159-163, 2000
    [12] C. Quilliet, and B. Berge, “Electrowetting: a recent outbreak,” Current Opinion in Colloid & Interface Science, vol. 6, pp. 34-39, 2001
    [13] C. Quilliet, and B. Berge, “Investigation of effective interface potentials by electrowetting, ” Europhysics letter, vol. 60, pp. 99-105, 2002
    [14] S. A. Safran, “Statistical thermodynamics of surfaces, interfaces, and membranes,” Addison-Wesley Publishing Company, 1994
    [15] T. Young, “An essay on the cohesion of fluid,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 95, pp. 65-87, 1805
    [16] N. A. Patankar, “Mimicking the lotus effect: influence of double roughness structures and slender pillars,” Langmuir, vol. 20, pp. 8209-8213, 2004
    [17] R. N. Wenzel, “Resistance of solid surface to wetting by water,” Industrial and Engineering Chemistry, Vol. 28, pp. 988-994, 1936
    [18] R. E. Johnson, and R. H. Dettre, “Contact angle hysteresis: contact angle measurements on roughness surfaces,” Advances in Chemistry Series, vol. 43, pp. 112-144, 1963
    [19] 陳佳惠, “斥水性奈微結構表面之液滴驅動與操控,” 國立清華大學動力機械工程學系碩士論文, 民國93
    [20] A. B. D. Cassie, and S. Baxter, “Wettability of porous surface,” Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.
    [21] J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhysics Letters, Vol. 47, pp. 220-226, 1999.
    [22] D. Oner, and T. J. McCarthy, “Ultrahydrophobic surfaces. Effects of topography length scales on wettability,” Langmuir, Vol. 16, pp. 7777-7782, 2000
    [23] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, “Effects of surface structure on the hydrophobicity and sliding behavior of water Droplets,” Langmuir, Vol. 18, pp. 5818-5822, 2002.
    [24] J. Kim, and C. J. Kim, “Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics ,” 15th IEEE International Micro Electro Mechanical System Conference, Las Vegas, Nevada USA., pp.479-482, 2002
    [25] H. E. Jeong, S. H. Lee, J. K. Kim, and K. Y. Suh, “Nanoengineered multiscale hierarchical Structures with tailored wetting properties,” Langmuir, vol. 22, pp. 1640-1645, 2006
    [26] S. K.Cho, H. Moon, J. Fowler, S. K. Fan, and C. J. Kim, “Splitting a liquid droplet for electrowetting-Based microfluidics,” Int. Mechanical Engineer Congress and Exposition, New York, NY, Nov. 2001
    [27] 杜逸虹, “物理化學,” 三民書局股份有限公司, 民國79
    [28] M. J. Jaycock, and G. D. Parfitt, “Chemistry of interface,” Halsted Press, New York, 1981
    [29] W. D. Harkins, “The Physical chemistry of surface films,” Reinhold, New York, 1952
    [30] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” Journal Physics D: Applied Physics, vol. 31 pp. 2338-2353, 1998
    [31] N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, “Rapid communication electric field induced fluid flow on microelectrodes: the effect of illumination,” Journal Physics D: Applied Physics, vol. 33, pp. 13–17, 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE