簡易檢索 / 詳目顯示

研究生: 劉意如
Liu, Yi-Ju
論文名稱: 利用共平面式電極之電濕潤微流體系統完成DNA反應與檢測之研究
DNA Reaction and Detection using an EWOD Microfluidic System with Coplanar Electrodes
指導教授: 饒達仁
Yao, Da-Jeng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
中文關鍵詞: 數位微流體系統DNA檢測共平面式電濕潤液珠
外文關鍵詞: Digital microfluidics, DNA detection, Coplanar electrode, Electrowetting, Droplet
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • An automatic ultramicro volume DNA ligation process using coplanar electrode type of electrowetting-on-dielectric (EWOD) microfluidic system was designed for economy of reagent. The droplets, containing DNA, a ligation enzyme and a multi-salt reaction buffer, served to complete the ligation using a developed EWOD system. Droplets of ultramicro volume (0.3 μL) were successfully generated from reservoirs between one plate with coplanar electrodes and another plate with a hydrophobic surface free of electrodes. In one successful cloning, the usage of total reagents in an ultramicro volume EWOD chip was 2.1 μL; no volume was wasted, for comparison with 85 % waste with the standard protocol and 80 % waste with a free-cover coplanar EWOD chip. The results show also that the entire process was accomplished without damage to the chip surface and without biomaterial annulment.
    Because synthetic oligonucleotides have advantages of cost, purity and custom-made sequences relative to natural products, oligonucleotides are advantageously replacing genomic and cloned DNA as DNA probes. Modification of functional groups at the two ends of a probe for immobilization on a solid support remains, however, tedious and expensive. We have devised a rapid, efficient and flexible, and inexpensive method for synthesis in-situ of oligonucleotide probes on a magnetic bead. This procedure requires about 15 min at 25 °C with a DNA polymerase I Large Klenow Fragment. We used MB, with the synthesized probe on the surface, to detect the single nucleotide polymorphism (SNP) site in an oligonucleotide ligation assay to confirm the correct function of the synthesized probe.
    In the DNA detection, this work demonstrated the feasibility of detecting 250 zM Escherichia coli O157:H7 eaeA target DNA by using a magnetic bead-based DNA detection assay with designed labeling strategy within 40-60 min. The magnetic beads (MB) were used as the solid support for the binding probe and isolated the target DNA from the sample. The detection signals could be amplified from the multi-layers biotin-streptavidin conjugated quantum dots (QDots) based on binding with specific designed biotinylated linker. This assay method would provide a simple, rapid, and ultra-sensitive detection method for DNA or other biomolecular analysis.
    In the future, with a design consisting of electrode pathways in a flexible pattern and multiplex reservoirs, an EWOD digital microfluidic system with coplanar electrodes would be improved as an efficient parallel DNA-cloning system in construction of an artificial library or expression library. On the other hand, the EWOD system also be suggest operating the SNP detection via oligonucleotide ligation assay and the MB which carried in-situ oligonucleotide probe on the surface. Moreover, was also being expected that the detecting process developed for very low concentration DNA could be successfully achieved by using the EWOD system.


    Table of Contents Abstract 2 中文摘要 4 Table of Contents 6 List of Illustrations 8 List of Tables 10 1 Chapter 1 Introduction 11 1.1 Background 11 1.2 Objectives of the dissertation 12 1.3 Overview of the dissertation 13 2 Chapter 2 Literature Review 14 2.1 Introduction of electrowetting-on-dielectric (EWOD) 14 2.1.1 The two-plate configuration EWOD chip 15 2.1.2 The EWOD with coplanar electrodes design 15 2.2 Introduction of the single nucleotide polymorphism (SNP) 17 2.2.1 Definition of SNP and genotyping SNP 18 2.2.2 Direct hybridization techniques 18 2.2.3 Restriction enzyme cutting and exonuclease detection (TaqMan) 20 2.2.4 Single strand DNA conformation and heteroduplexes 20 2.2.5 Primer extension and pyrosequencing 21 2.2.6 Oligonucleotide ligation assay 21 2.3 Introduction of the magnetic microbeads for affinity biosensors 22 2.3.1 Immunomagnetic electrochemical sensors 22 2.3.2 Magnetic electrochemical assays 24 2.3.3 Magnetic microbeads-based enzymatic biosensors 25 2.3.4 Bio-bar code assays 26 2.3.5 Rolling circle amplification assays 28 2.4 Introduction of the biosensing with quantum dots (QDots) 30 2.4.1 Properties of QDots 30 2.4.2 Bioconjugation of QDots 33 2.4.3 Nucleic acid detection 34 2.4.4 Sensing based on FRET with QDots bioconjugates 35 3 Chapter 3 Basic theory and principle 38 3.1 Introduction of DNA ligation and SNP detection by oligonucleotide ligation assay on the EWOD system 38 3.2 Introduction of the in-situ synthesis of the oligonucleotides probes on the magnetic bead 40 3.3 Introduction of the magnetic bead-based DNA detection with multi-layers QDots labeling for rapid detection of Escherichia coli O157:H7 41 4 Chapter 4 Instrumentation and experiment details 43 4.1 Experimental details of DNA ligation on coplanar EWOD chip 43 4.1.1 Biosample preparation 43 4.1.2 Electrode design and chip fabrication (developed in our laboratory) 43 4.1.3 Ligation 45 4.1.3.1 Without hydrophobic top glass plate 45 4.1.3.2 With hydrophobic top glass plate 46 4.1.4 Transformation 48 4.1.5 Culture and insert DNA check 48 4.2 Experimental details of in-situ synthesis the oligonucleotides probes on the magnetic bead 49 4.2.1 Chemicals and reagents 49 4.2.2 Synthesis of one kind of the oligonucleotide probe in-situ on magnetic beads 49 4.3 Experimental details of the SNP detection by oligonucleotide ligation assay 50 4.3.1 Detection of SNP with Taq DNA ligase 50 4.3.2 SNP detection on the EWOD chip 51 4.4 Experimental details of magnetic bead-based DNA detection with multi-layers QDots labeling 52 4.4.1 Chemicals and reagents 52 4.4.2 DNA isolation and multi-layers QDots labeling 52 4.4.3 Sensitivity and mismatch experiment 54 4.4.4 Fluoresces image acquisition and data analysis 55 5 Chapter 5 Results and Discussions 56 5.1 Biosample transmission on an coplanar-electrode EWOD chip and analysis of the insert DNA length 56 5.1.1 Without hydrophobic top glass plate 56 5.1.2 With hydrophobic top glass plate 57 5.2 Results of the in-situ synthesis of the oligonucleotides probes on the magnetic bead 61 5.3 Result of SNP detection - Using MB and Taq DNA ligase 62 5.4 Results and discussion of multi-layers QDots labeling method 64 5.4.1 Multi-layers QDots labeling on the MB by DNA hybridize 64 5.4.2 Trial of sensitivity and mismatch discriminability 64 6 Chapter 6 Conclusion 71 References 72

    References

    [1] S. K. Cho, H. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical Systems, vol. 12, pp. 70-80, 2003.
    [2] P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, "Electrowetting-based droplet mixers for microfluidic systems," Lab on a Chip, vol. 3, pp. 28-33, 2003.
    [3] Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, "Integrated polymerase chain reaction chips utilizing digital microfluidics," Biomedical Microdevices, vol. 8, pp. 215-225, 2006.
    [4] C. M. Spectrom, "Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry," Analytical Chemistry, vol. 76, pp. 4833-4838, 2004.
    [5] A. R. Wheeler, H. Moon, C. A. Bird, R. R. O. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, "Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS," Analytical Chemistry, vol. 77, pp. 534-540, 2005.
    [6] V. Srinivasan, V. K. Pamula, and R. B. Fair, "Droplet-based microfluidic lab-on-a-chip for glucose detection," Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.
    [7] U. C. Yi and C. J. Kim, "EWOD actuation with electrode-free cover plate," in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducer '05), 2005, pp. 89-92.
    [8] C. G. Cooney, C. Y. Chen, M. R. Emerling, A. Nadim, and J. D. Sterling, "Electrowetting droplet microfluidics on a single planar surface," Microfluidics and Nanofluidics, vol. 2, pp. 435-446, 2006.
    [9] U. C. Yi and C. J. Kim, "Characterization of electrowetting actuation on addressable single-side coplanar electrodes," Journal of Micromechanics and Microengineering, vol. 16, pp. 2053-2059, 2006.
    [10] Y.-J. Liu, H.-C. Lin, W.-Y. Chang, H.-Y. Chang, and D.-J. Yao, "DNA ligation using digital microfluidics based on single planar surface electrowetting-on-dielectric (EWOD)," in IEEE International Conference on Nano/Molecular Medicine and Engineering, 2007.
    [11] EPICENTRE, "Fast-LinkTM DNA Ligation and Screening Kits," EPICENTRE Biotechnologies, 2007.
    [12] B. Berge, "Electrocapillarity and wetting of insulator films by water," Comptes Rendus de l’Academie des Sciences Serie II, vol. 317, pp. 157–163, 1993.
    [13] R. B. Fair, A. Khlystov, T. D. Tailor, V. Ivanov, R. D. Evans, V. Srinivasan, V. K. Pamula, M. G. Pollack, P. B. Griffin, and J. Zhou, "Chemical and biological applications of digital-microfluidic devices," Design & Test of Computers, IEEE, vol. 24, pp. 10-24, 2007.
    [14] P. Paik, K. Chakrabarty, and V. Pamula, "Droplet-based hot spot cooling using topless digital microfluidics on a printed circuit board," International Workshop on Thermal Investigation og ICs ans Systems, pp. 278-284, 2005.
    [15] D. Altshuler, V. J. Pollara, C. R. Cowies, W. J. Van Etten, J. Baldwin, L. Linton, and E. S. Lander, "An SNP map of the human genome generated by reduced representation shotgun sequencing," Nature, vol. 407, pp. 513-516, 2000.
    [16] M. S. Bray, E. Boerwinkle, and P. A. Doris, "High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: Practice, problems and promise," Human Mutation, vol. 17, pp. 296-304, 2001.
    [17] F. S. Collins, L. D. Brooks, and A. Chakravarti, "A DNA polymorphism discovery resource for research on human genetic variation." vol. 8: Cold Spring Harbor Lab, 1998, pp. 1229-1231.
    [18] D. W. Collins and T. H. Jukes, "Rates of transition and transversion in coding sequences since the human-rodent divergence," Genomics, vol. 20, pp. 386-396, 1994.
    [19] G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon, "Merlin—rapid analysis of dense genetic maps using sparse gene flow trees," Nature Genetics, vol. 30, pp. 97-101, 2001.
    [20] T. Pastinen, A. Kurg, A. Metspalu, L. Peltonen, and A. C. Syvanen, "Minisequencing: A specific tool for DNA analysis and diagnostics on oligonucleotide arrays." vol. 7: Cold Spring Harbor Lab, 1997, pp. 606-614.
    [21] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. A. Fodor, "Light-generated oligonucleotide arrays for rapid DNA sequence analysis," Proceedings of the National Academy of Sciences, vol. 91, pp. 5022-5026, 1994.
    [22] J. G. Hacia, L. C. Brody, M. S. Chee, S. P. A. Fodor, and F. S. Collins, "Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis," Nature Genetics, vol. 14, pp. 441-447, 1996.
    [23] D. G. Wang, J. B. Fan, C. J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester, and J. Spencer, "Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome," Science, vol. 280, p. 1077, 1998.
    [24] A. Vignal, D. Milan, M. SanCristobal, and A. Eggen, "A review on SNP and other types of molecular markers and their use in animal genetics," Genetics Selection Evolution, vol. 34, pp. 275-306, 2002.
    [25] L. G. Lee, C. R. Connell, and W. Bloch, "Allelic discrimination by nick-translation PCR with fluorogenic probes," Nucleic Acids Research, vol. 21, pp. 3761-3761, 1993.
    [26] W. Liu, D. I. Smith, K. J. Rechtzigel, S. N. Thibodeau, and C. D. James, "Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations," Nucleic Acids Research, vol. 26, pp. 1396-1400.
    [27] T. Pastinen, M. Raitio, K. Lindroos, P. Tainola, L. Peltonen, and A. C. Syvanen, "A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays." vol. 10: Cold Spring Harbor Lab, 2000, pp. 1031-1042.
    [28] M. Ronaghi, "Pyrosequencing Sheds Light on DNA Sequencing," Genome Research, vol. 11, pp. 3-11, 2001.
    [29] V. O. Tobe, S. L. Taylor, and D. A. Nickerson, "Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay," Nucleic Acids Research, vol. 24, pp. 3728-3732.
    [30] P. D. Grossman, W. Bloch, E. Brinson, C. C. Chang, F. A. Eggerding, S. Fung, D. M. Iovannisci, S. Woo, E. S. Winn-Deen, and D. A. Iovannisci, "High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation," Nucleic Acids Research, vol. 22, p. 4527, 1994.
    [31] G. T. Hermanson, A. K. Mallia, and P. K. Smith, Immobilized affinity ligand techniques: Academic Press San Diego, 1992.
    [32] D. G. Georganopoulou, L. Chang, J. M. Nam, C. S. Thaxton, E. J. Mufson, W. L. Klein, and C. A. Mirkin, "Fluorescent and scanometric ultrasensitive detection technologies with the biobar code assay for alzheimer's disease diagnosis," PNAS, vol. 102, pp. 2273-2276, 2005.
    [33] Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen, and R. Yu, "A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode," Analytica Chimica Acta, vol. 533, pp. 3-9, 2005.
    [34] S. I. Stoeva, J. S. Lee, C. S. Thaxton, and C. A. Mirkin, "Multiplexed DNA detection with biobarcoded nanoparticle probes," Angewandte Chemie, vol. 45, pp. 3303-3306, 2006.
    [35] J. M. Nam, S. I. Stoeva, and C. A. Mirkin, "Bio-bar-code-based DNA detection with PCR-like sensitivity," Journal of the American Chemical Society, vol. 126, pp. 5932-5933, 2004.
    [36] J. M. Nam, C. S. Thaxton, and C. A. Mirkin, "Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins." Science, vol. 301, pp. 1884-1886, 2003.
    [37] S. Helali, C. Martelet, A. Abdelghani, M. A. Maaref, and N. Jaffrezic-Renault, "A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads on gold surface for the detection of atrazine," Electrochimica Acta, vol. 51, pp. 5182-5186, 2006.
    [38] A. G. Gehring, J. D. Brewster, P. L. Irwin, S. I. Tu, and L. J. Van Houten, "1-Naphthyl phosphate as an enzymatic substrate for enzyme-linked immunomagnetic electrochemistry," Journal of Electroanalytical Chemistry, vol. 469, pp. 27-33, 1999.
    [39] S. Sole, S. Alegret, F. Cespedes, E. Fabregas, and T. Diez-Caballero, "Flow injection immunoanalysis based on a magnetoimmunosensor system," Analytical Chemistry, vol. 70, pp. 1462-1467, 1998.
    [40] M. Santandreu, S. Sole, E. Fabregas, and S. Alegret, "Development of electrochemical immunosensing systems with renewable surfaces," Biosensors and Bioelectronics, vol. 13, pp. 7-17, 1998.
    [41] Z. M. Liu, H. F. Yang, Y. F. Li, Y. L. Liu, G. L. Shen, and R. Q. Yu, "Core–shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing," Sensors & Actuators: B. Chemical, vol. 113, pp. 956-962, 2006.
    [42] M. Dequaire, C. Degrand, and B. Limoges, "An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2, 4-dichlorophenoxyacetic acid," Analytical Chemistry, vol. 71, pp. 2571-2577, 1999.
    [43] E. Pale?ek, M. Fojta, and F. Jelen, "New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces," Bioelectrochemistry, vol. 56, pp. 85-90, 2002.
    [44] J. Wang, A. N. Kawde, A. Erdem, and M. Salazar, "Magnetic bead-based label-free electrochemical detection of DNA hybridization," The Analyst, vol. 126, pp. 2020-2024, 2001.
    [45] K. Kerman, Y. Matsubara, Y. Morita, Y. Takamura, and E. Tamiya, "Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization," Science and Technology of Advanced Materials, vol. 5, pp. 351-357, 2004.
    [46] A. Erdem, M. I. Pividori, A. Lermo, A. Bonanni, M. Valle, and S. Alegret, "Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes," Sensors & Actuators: B. Chemical, vol. 114, pp. 591-598, 2006.
    [47] J. Wang, D. Xu, A. Erdem, R. Polsky, and M. A. Salazar, "Genomagnetic electrochemical assays of DNA hybridization," Talanta, vol. 56, pp. 931-938, 2002.
    [48] A. R. Varlan, W. Sansen, A. V. Loey, and M. Hendrickx, "Covalent enzyme immobilization on paramagnetic polyacrolein beads," Biosensors and Bioelectronics, vol. 11, pp. 443-448, 1996.
    [49] A. Miyabayashi and B. Mattiasson, "An enzyme electrode based on electromagnetic entrapment of the biocatalyst bound to magnetic beads," Analytica chimica acta., vol. 213, pp. 121-130, 1988.
    [50] A. R. Varlan, J. Suls, P. Jacobs, and W. Sansen, "A new technique of enzyme entrapment for planar biosensors," Biosensors and Bioelectronics, vol. 10, 1995.
    [51] M. H. Liao, J. C. Guo, and W. C. Chen, "A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with ferricyanide-magnetic nanoparticle mixture," Journal of Magnetism and Magnetic Materials, vol. 304, pp. 421-423, 2006.
    [52] B. W. Lu and W. C. Chen, "A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 304, pp. 400-402, 2006.
    [53] B. K. Oh, J. M. Nam, S. W. Lee, and C. A. Mirkin, "A fluorophore-based bio-barcode amplification assay for proteins."
    [54] N. Jaffrezic-Renault, C. Martelet, Y. Chevolot, and J. P. Cloarec, "Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads," Sensors, vol. 7, pp. 589-614, 2007.
    [55] B. Schweitzer, S. Wiltshire, J. Lambert, S. O'Malley, K. Kukanskis, Z. Zhu, S. F. Kingsmore, P. M. Lizardi, and D. C. Ward, "Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection," Proceedings of the National Academy of Sciences, p. 170237197, 2000.
    [56] R. P. Haugland, M. T. Z. Spence, I. D. Johnson, and A. Basey, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies: Molecular Probes, 2005.
    [57] J. R. Lakowicz, "Principles of Fluorescence Spectroscopy," Journal of Biomedical Optics, pp. 1-2, 2006.
    [58] B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, "The fluorescent toolbox for assessing protein location and function." Science, vol. 312, pp. 217-224, 2006.
    [59] W. C. W. Chan and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science, vol. 281, p. 2016, 1998.
    [60] B. J. Marcel, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science, vol. 281, pp. 2013-2016, 1998.
    [61] W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology, vol. 16, pp. R9-R25, 2005.
    [62] T. Kippeny, L. A. Swafford, and S. J. Rosenthal, "Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box," Journal of Chemical Education, vol. 79, pp. 1094-1100, 2002.
    [63] P. Alivisatos, "The use of nanocrystals in biological detection," Nature Biotechnology, vol. 22, pp. 47-52, 2004.
    [64] A. Striolo, J. Ward, J. M. Prausnitz, W. J. Parak, D. Zanchet, D. Gerion, D. Milliron, and A. P. Alivisatos, "Molecular weight, osmotic second virial coefficient, and extinction coefficient of colloidal CdSe nanocrystals," Journal of Physical Chemistry B, vol. 106, 2002.
    [65] C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the absorption cross section of CdSe nanocrystal quantum dots," The Journal of Physical Chemistry B, vol. 106, pp. 7619–7622, 2002.
    [66] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science, vol. 307, pp. 538-544, 2005.
    [67] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials," The Journal of Physical Chemistry B, vol. 101, pp. 9463–9475, 1997.
    [68] M. Ozkan, "Quantum dots and other nanoparticles: what can they offer to drug discovery?," Drug Discovery Today, vol. 9, pp. 1065-1071, 2004.
    [69] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her 2 and other cellular targets with semiconductor quantum dots," Nature Biotechnology, vol. 21, pp. 41-46, 2003.
    [70] J. K. Jaiswal and S. M. Simon, "Potentials and pitfalls of fluorescent quantum dots for biological imaging," Trends in Cell Biology, vol. 14, pp. 497-504, 2004.
    [71] A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, "Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors," Journal of the American Chemical Society,, vol. 126, pp. 301–310, 2004.
    [72] A. R. Clapp, I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum-dot-based multiplexed fluorescence resonance energy transfer," Proceedings of SPIE, vol. 5704, p. 69, 2005.
    [73] C. Wang, M. Shim, and P. Guyot-Sionnest, "Electrochromic nanocrystal quantum dots," Science, vol. 291, p. 2390, 2001.
    [74] G. T. Hermanson, Bioconjugate techniques: Academic Press San Diego, 1996.
    [75] C. Y. Zhang, H. Ma, S. M. Nie, Y. Ding, L. Jin, and D. Y. Chen, "Quantum dot-labeled trichosanthin," Analyst, vol. 125, pp. 1029-1031, 2000.
    [76] L. Berti, J. Xie, I. L. Medintz, A. N. Glazer, and R. A. Mathies, "Energy transfer cassettes for facile labeling of sequencing and PCR primers," Analytical Biochemistry, vol. 292, pp. 188-197, 2001.
    [77] D. Gerion, W. J. Parak, S. C. Williams, D. Zanchet, C. M. Micheel, and A. P. Alivisatos, "Sorting fluorescent nanocrystals with DNA," Journal of American Chemical Society, vol. 124, 2001.
    [78] D. Gerion, F. Chen, B. Kannan, A. Fu, W. J. Parak, D. J. Chen, A. Majumdar, and A. P. Alivisatos, "Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays," Analytical Chemistry, vol. 9463, p. 9475.
    [79] R. Q. Liang, W. Li, Y. Li, C. Tan, J. X. Li, Y. X. Jin, and K. C. Ruan, "An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe," Nucleic Acids Research, vol. 33, p. e17, 2005.
    [80] E. A. Jares-Erijman and T. M. Jovin, "FRET imaging," Nature Biotechnology, vol. 21, pp. 1387-1395, 2003.
    [81] A. Miyawaki, "Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling," Developmental Cell, vol. 4, pp. 295-305, 2003.
    [82] A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Forster resonance energy transfer investigations using quantum-dot fluorophores," ChemPhysChem, vol. 7, pp. 47-57, 2006.
    [83] C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nature Materials, vol. 4, pp. 826–831, 2005.
    [84] R. Zengerle, P. Koltay, and J. Ducree, "Microfluidics: an enabling technology for the life sciences," Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004. Proceedings of the 2004 International Symposium on, pp. 1-6.
    [85] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles," Science, vol. 277, p. 1078, 1997.
    [86] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, "One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes," Journal of the American Chemical Society, vol. 120, pp. 1959-1964, 1998.
    [87] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA array Detection with nanoparticle probes," Science, vol. 289, pp. 1757-1760, 2000.
    [88] B. Dubertret, M. Calame, and A. J. Libchaber, "Single-mismatch detection using gold-quenched fluorescent oligonucleotides," Nature Biotechnology, vol. 19, pp. 365-370, 2001.
    [89] D. A. Tagle, M. Swaroop, M. Lovett, and F. S. Collins, "Magnetic bead capture of expressed sequences encoded within large genomic segments," Nature, vol. 361, pp. 751-753, 1993.
    [90] D. Dressman, H. Yan, G. Traverso, K. W. Kinzler, and B. Vogelstein, "Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations," Proceedings of the National Academy of Sciences, vol. 100, pp. 8817-8822, 2003.
    [91] A. Fu, C. M. Micheel, J. Oha, H. Chang, H. Yang, and A. P. Alivisatos, "Discrete nanostructures of quantum dots/Au with DNA," Journal of the American Chemical Society, vol. 126, pp. 10832-10833, 2004.
    [92] C. Zhang, H. Yeh, M. T. Kuroki, and T. Wang, "Single-quantum-dot-based DNA nanosensor," Nature Materials, vol. 4, p. 826, 2005.
    [93] M. K. Walsh, X. Wang, and B. C. Weimer, "Optimizing the immobilization of single-stranded DNA onto glass beads," Journal of Biochemical and Biophysical Methods, vol. 47, pp. 221-31, 2001.
    [94] D. A. Dederich, G. Okwuonu, T. Garner, A. Denn, A. Sutton, M. Escotto, A. Martindale, O. Delgado, D. M. Muzny, and R. A. Gibbs, "Glass bead purification of plasmid template DNA for high throughput sequencing of mammalian genomes," Nucleic Acids Research, vol. 30, p. e32, 2002.
    [95] M. Campas and I. Katakis, "Characterisation and determination of stability and functionality of biofunctionalised colloidal gold nanoparticles," Analytica Chimica Acta, vol. 556, pp. 306-312, 2006.
    [96] O. Nord, M. Lukacs, J. Lundeberg, and M. Uhlen, "The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures," Electrophoresis, vol. 26, pp. 501-510, 2005.
    [97] H. Okayama, D. T. Curiel, M. L. Brantly, M. D. Holmes, and R. G. Crystal, "Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification," Journal of Laboratory and Clinical Medicine, vol. 114, pp. 105-13, 1989.
    [98] T. Pastinen, M. Raitio, K. Lindroos, P. Tainola, L. Peltonen, and A. C. Syvanen, "A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays," Genome Research, vol. 10, pp. 1031-1042, 2000.
    [99] S. Little, "Amplification-refractory mutation system (ARMS) analysis of point mutations," Current Protocols in Human Genetics, vol. 2, pp. 1-9.8, 2001.
    [100] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlen, and P. Nyren, "Real-time DNA sequencing using detection of pyrophosphate release," Analytical Biochemistry, vol. 242, pp. 84-89, 1996.
    [101] M. Ronaghi, M. Uhlén, and P. Nyrén, "DNA Sequencing: A sequencing method based on real-time pyrophosphate," Science, vol. 281, p. 363, 1998.
    [102] P. M. Holland, R. D. Abramson, R. Watson, and D. H. Gelfand, "Detection of specific polymerase chain reaction product by utilizing the 5'-3'exonuclease activity of Thermus aquaticus DNA polymerase," Proceedings of the National Academy of Sciences, vol. 88, pp. 7276-80, 1991.
    [103] K. J. Livak, S. J. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," Genome Research, vol. 4, pp. 357-362, 1995.
    [104] U. Landegren, R. Kaiser, J. Sanders, and L. Hood, "A ligase-mediated gene detection technique," Science, vol. 241, pp. 1077-1080, 1988.
    [105] F. Barany, "The ligase chain reaction in a PCR world," Genome Research, vol. 1, p. 149, 1991.
    [106] P. D. Grossman, W. Bloch, E. Brinson, C. C. Chang, F. A. Eggerding, S. Fung, D. M. Iovannisci, S. Woo, and E. S. Winn-Deen, "High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation," Nucleic Acids Research, vol. 22, pp. 4527-34, 1994.
    [107] Y. P. Ho, M. C. Kung, S. Yang, and T. H. Wang, "Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes," Nano Letters, vol. 5, pp. 1693–1697, 2005.
    [108] R. Edgar, M. McKinstry, J. Hwang, A. B. Oppenheim, R. A. Fekete, G. Giulian, C. Merril, K. Nagashima, and S. Adhya, "High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes," Proceedings of the National Academy of Sciences, vol. 103, pp. 4841-4845, 2006.
    [109] M. A. M. Gijs, "Magnetic bead handling on-chip: new opportunities for analytical applications," Microfluidics and Nanofluidics, vol. 1, pp. 22-40, 2004.
    [110] Y. Sun, Y. Bai, D. Song, X. Li, L. Wang, and H. Zhang, "Design and performances of immunoassay based on SPR biosensor with magnetic microbeads," Biosensors and Bioelectronics, vol. 23, pp. 473-478, 2007.
    [111] M. Shikida, K. Takayanagi, H. Honda, H. Ito, and K. Sato, "Development of an enzymatic reaction device using magnetic bead-cluster handling," Journal of Micromechanics and Microengineering, vol. 16, pp. 1875-1883, 2006.
    [112] J. M. Nam, C. S. Thaxton, and C. A. Mirkin, "Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins," Science, vol. 301, pp. 1884-1886, 2003.
    [113] P. K. Witham, C. T. Yamashiro, K. J. Livak, and C. A. Batt, "A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef," Applied and Environmental Microbiology, vol. 62, pp. 1347-1353, 1996.
    [114] R. D. Oberst, M. P. Hays, L. K. Bohra, R. K. Phebus, C. T. Yamashiro, C. Paszko-Kolva, S. J. Flood, J. M. Sargeant, and J. R. Gillespie, "PCR-based DNA amplification and presumptive detection of Escherichia coli O157:H7 with an internal fluorogenic probe and the 5' Nuclease (TaqMan) Assay," Applied and Environmental Microbiology, vol. 64, p. 3389, 1998.
    [115] J. L. Holland, L. Louie, A. E. Simor, and M. Louie, "PCR detection of Escherichia coli O157:H7 directly from stools: evaluation of commercial extraction methods for purifying fecal DNA," Journal of Clinical Microbiology, vol. 38, p. 4108, 2000.
    [116] P. M. Fratamico, S. K. Sackitey, M. Wiedmann, and M. Y. Deng, "Detection of Escherichia coli O157:H7 by multiplex PCR," Journal of Clinical Microbiology, vol. 33, pp. 2188-91, 1995.
    [117] G. Wang, C. G. Clark, and F. G. Rodgers, "Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR," Journal of Clinical Microbiology, vol. 40, p. 3613, 2002.
    [118] A. A. Bhagwat, "Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR," International Journal of Food Microbiology, vol. 84, pp. 217-224, 2003.
    [119] N. Jothikumar and M. W. Griffiths, "Rapid detection of Escherichia coli O157:H7 with multiplex real-time PCR assays," Applied and Environmental Microbiology, vol. 68, pp. 3169-3171, 2002.
    [120] V. K. Sharma and E. A. Dean-Nystrom, "Detection of enterohemorrhagic Escherichia coli O157:H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins," Veterinary Microbiology, vol. 93, pp. 247-260, 2003.
    [121] X. Mao, L. Yang, X. L. Su, and Y. Li, "A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7," Biosensors and Bioelectronics, vol. 21, pp. 1178-1185, 2006.
    [122] X. L. Su and Y. Li, "A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7," Biosensors and Bioelectronics, vol. 19, pp. 563-574, 2004.
    [123] P. M. Fratamico, T. P. Strobaugh, M. B. Medina, and A. G. Gehring, "Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor," Biotechnology Techniques, vol. 12, pp. 571-576, 1998.
    [124] E. Kai, K. Ikebukuro, S. Hoshina, H. Watanabe, and I. Karube, "Detection of PCR products of Escherichia coli O157:H 7 in human stool samples using surface plasmon resonance(SPR)," FEMS Immunology and Medical Microbiology, vol. 29, pp. 283-288, 2000.
    [125] C. Ruan, L. Yang, and Y. Li, "Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy," Analytical Chemistry, vol. 74, pp. 4814-4820, 2002.
    [126] L. Yang, Y. B. Li, and G. F. Erf, "Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7," Analytical Chemistry, vol. 76, pp. 1107-1113, 2004.
    [127] M. G. Pollack, "Electrowetting-based actuation of liquid droplets for microfluidic applications," Applied Physics Letters, vol. 77, p. 1725, 2000.
    [128] J. Yu and J. B. Kaper, "Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157: H7," Molecular Microbiology, vol. 6, pp. 411-417, 1992.
    [129] E. D. Green, H. C. Riethman, J. E. Dutchik, and M. V. Olson, "Detection and characterization of chimeric yeast artificial-chromosome clones," Genomics, vol. 11, pp. 658-69, 1991.
    [130] H. Shizuya, B. Birren, U. Kim, V. Mancino, T. Slepak, Y. Tachiiri, and M. Simon, "Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector," Proceedings of the National Academy of Sciences, vol. 89, pp. 8794-8797, 1992.
    [131] J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd edit: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
    [132] A. Agrawal, T. Sathe, and S. Nie, "Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots," Journal of Agricultural and Food Chemistry, vol. 55, pp. 3778-3782, 2007.
    [133] P. Singleton, Bacteria in Biology, Biotechnology and Medicine: John Wiley and Sons, 2004.
    [134] R. J. Gilbert, J. de Louvois, T. Donovan, C. Little, K. Nye, C. D. Ribeiro, J. Richards, D. Roberts, and F. J. Bolton, "Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products," Commun Dis Public Health, vol. 3, pp. 163-7, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE