研究生: |
涂易恆 Tu, Yi-Heng |
---|---|
論文名稱: |
高效能電化學去離子系統之建構 Construction of Highly Efficient Electrochemical Deionization System |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
黃志彬
Huang, Chih-Pin 侯嘉洪 Hou, Chia-Hung 董瑞安 Doong, Ruey-An 蔡德豪 Tsai, De-Hao 黃振煌 Huang, Jen Huang (Tony) |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 259 |
中文關鍵詞: | 電容去離子 、電化學去離子 、擬電容材料 、二氧化錳 、聚吡咯 、記憶效應 、法拉第反應 、高效率 、高穩定性 、參雜物 、離子選擇性 、老化機制 |
外文關鍵詞: | Capacitive deionization, Electrochemical deionization, Pseudocapacitive materials, Manganese oxide, Polypyrrole, Memory effect, Faradaic reaction, High efficiency, Highly stable, Dopant, Ion selectivity, Degradation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究計畫的主旨為利用材料設計、裝置開發、系統優化以及機制調查等方式來建構一高效率之電化學去離子系統,利用電化學行為的研究,建立一套能提高效率之策略。本研究主要使用之材料為擬電容材料δ型錳氧化物、聚吡咯修飾之活性碳、電化學沉積之錳氧化物以及利用電化學聚合含有不同參雜物之聚吡咯。根據這些材料之研究結果,我們成功建構出數個具有高效率之電化學去離子系統,如:錳氧化物//聚吡咯以及全高分子聚吡咯//聚吡咯系統。
為了更進一步提高電化學去離子系統之表現,本研究將微流體技術與電化學去離子系統結合,開發出一新穎的微流體電化學去離子裝置。此裝置由於其較窄的流道距離,能夠大幅度的減少離子從溶液擴散到電極表面之距離,有效提高系統的脫鹽速率以及鹽類去除百分比。
藉由前述所開發之高效率錳氧化物//聚吡咯系統,結合具有高解析度以及分離能力之微流道裝置,本論文針對電化學沉積之錳氧化物的離子選擇性進行了全面性的研究。結果說明錳氧化物在電化學去離子系統中的離子選擇性具有時間相關性,根據操作時間的不同會有不同的離子選擇偏好。影響錳氧化物離子選擇現象的因素主要有兩個,分別是水合離子半徑的大小以及離子之電荷密度。另外,本部分研究也使用電化學石英天平來對錳氧化物之離子選擇機制進行驗證。
最後,本研究使用聚吡咯替換掉正極之錳氧化物,開發出一個全高分子電化學去離子系統。藉由樣品在操作前後的材料分析比較以及更換不同參雜物和操作條件,成功找出材料老化之原因。根據此現象,我們提出了兩個能夠有效延長此高分子系統之穩定性的策略。
總結來說,此篇論文利用擬電容型材料,結合新穎的裝置設計,顯著的提升了電化學去離子系統之效率以及穩定性。另外,我們也針對此系統之脫鹽過程、離子選擇行為以及老化機制進行了全面性的研究。此結果提供了在電化學去離子系統的優化中,有效且重要的觀點,使電化學去離子系統在將來更有機會被投入至實際水資源處理技術中使用。
In this study, we devised a strategy to construct a highly efficient electrochemical deionization (ECDI) system, focusing on material design and selection, cell development, system optimization, and mechanistic studies. We investigated δ-MnO2, electrodeposited MnOx, polypyrrole-decorated activated carbon (AC@PPy), and electropolymerized polypyrrole with various dopants (PPy). These materials contributed to the development of several highly efficient systems, including MnOx//PPy and a full-polymer ECDI system (PPy//PPy).
To further enhance system performance, we integrated a novel cell design that combines microfluidic techniques with ECDI to create a highly efficient device named microfluidic electrochemical deionization (MFECDI). This innovative design significantly increases the salt removal rate (SRR) and salt removal percentage by reducing the diffusion path.
By coupling the MnOx//PPy system with the MFECDI cell, we comprehensively explored the ion-selective behavior of electrodeposited MnOx in an ECDI system. The results demonstrated a time-dependent ion-selectivity profile, where both the hydrated radius and charge density of ions are critical factors. Furthermore, in-situ electrochemical quartz crystal microbalance (EQCM) studies were conducted to verify the ion-selectivity model.
Lastly, we developed a full-polymer system by replacing MnOx at the positive electrode with PPy. The degradation mechanism of this full-polymer system was investigated through pristine and post-cycling analysis, combined with different dopant selections and operational methods. As a result, we identified the main factors contributing to material degradation and proposed two strategies to significantly improve system stability.
Our findings demonstrate that the use of pseudocapacitive materials, coupled with advanced cell designs, can markedly improve the efficiency and stability of ECDI systems. Furthermore, exhaustive investigations into deionization processes, ion-selective behavior, and degradation mechanisms provide valuable insights into the optimization of ECDI technology for effective water treatment applications.
References
1. T. Humplik, J. Lee, S. O’hern, B. Fellman, M. Baig, S. Hassan, M. Atieh, F. Rahman, T. Laoui, and R. Karnik, Nanostructured Materials for Water Desalination. Nanotechnology 2011, 22 (29), 292001.
2. M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete? Electrochimica Acta 2010, 55 (12), 3845-3856.
3. M. Suss, S. Porada, X. Sun, P. Biesheuvel, J. Yoon, and V. Presser, Water Desalination Via Capacitive Deionization: What Is It and What Can We Expect from It? Energy & Environmental Science 2015, 8 (8), 2296-2319.
4. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the Science and Technology of Water Desalination by Capacitive Deionization. Progress in Materials Science 2013, 58 (8), 1388-1442.
5. F. Duan, X. Du, Y. Li, H. Cao, and Y. Zhang, Desalination Stability of Capacitive Deionization Using Ordered Mesoporous Carbon: Effect of Oxygen-Containing Surface Groups and Pore Properties. Desalination 2015, 376, 17-24.
6. I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, and D. Aurbach, Long Term Stability of Capacitive De-Ionization Processes for Water Desalination: The Challenge of Positive Electrodes Corrosion. Electrochimica Acta 2013, 106, 91-100.
7. X. Gao, A. Omosebi, J. Landon, and K. Liu, Dependence of the Capacitive Deionization Performance on Potential of Zero Charge Shifting of Carbon Xerogel Electrodes During Long-Term Operation. Journal of The Electrochemical Society 2014, 161 (12), E159-E166.
8. I. Cohen, E. Avraham, M. Noked, A. Soffer, and D. Aurbach, Enhanced Charge Efficiency in Capacitive Deionization Achieved by Surface-Treated Electrodes and by Means of a Third Electrode. The Journal of Physical Chemistry C 2011, 115 (40), 19856-19863.
9. E. Bayram, and E. Ayranci, A Systematic Study on the Changes in Properties of an Activated Carbon Cloth Upon Polarization. Electrochimica acta 2011, 56 (5), 2184-2189.
10. Y. Oren, Capacitive Deionization (CDI) for Desalination and Water Treatment — Past, Present and Future (a Review). Desalination 2008, 228 (1), 10-29.
11. Y. Liu, L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, and D. H. Chua, Porous Carbon Spheres Via Microwave-Assisted Synthesis for Capacitive Deionization. Electrochimica Acta 2015, 151, 489-496.
12. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi, and D. Zhang, Grafting Sulfonic and Amine Functional Groups on 3d Graphene for Improved Capacitive Deionization. Journal of Materials Chemistry A 2016, 4 (14), 5303-5313.
13. Y. Liu, T. Chen, T. Lu, Z. Sun, D. H. Chua, and L. Pan, Nitrogen-Doped Porous Carbon Spheres for Highly Efficient Capacitive Deionization. Electrochimica Acta 2015, 158, 403-409.
14. X. Xu, L. Pan, Y. Liu, T. Lu, and Z. Sun, Enhanced Capacitive Deionization Performance of Graphene by Nitrogen Doping. Journal of Colloid and Interface Science 2015, 445, 143-150.
15. J. Yang, L. Zou, H. Song, and Z. Hao, Development of Novel MnO2/Nanoporous Carbon Composite Electrodes in Capacitive Deionization Technology. Desalination 2011, 276 (1-3), 199-206.
16. Y. Zhang, Y. Wang, S. Xu, J. Wang, Z. Wang, and S. Wang, Polypyrrole Nanowire Modified Graphite (Ppy/G) Electrode Used in Capacitive Deionization. Synthetic Metals 2010, 160 (13), 1392-1396.
17. H.-Y. Chen, R. Al-Oweini, J. Friedl, C. Y. Lee, L. Li, U. Kortz, U. Stimming, and M. Srinivasan, A Novel Swcnt-Polyoxometalate Nanohybrid Material as an Electrode for Electrochemical Supercapacitors. Nanoscale 2015, 7 (17), 7934-7941.
18. M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, and L. Pan, From Metal-Organic Frameworks to Porous Carbons: A Promising Strategy to Prepare High-Performance Electrode Materials for Capacitive Deionization. Carbon 2016, 108, 433-439.
19. K. N. Knust, D. Hlushkou, U. Tallarek, and R. M. Crooks, Electrochemical Desalination for a Sustainable Water Future. ChemElectroChem 2014, 1 (5), 850-857.
20. V. Pothanamkandathil, J. Fortunato, and C. A. Gorski, Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands. Environmental Science & Technology 2020, 54 (6), 3653-3662.
21. J. Cao, Y. Wang, L. Wang, F. Yu, and J. Ma, Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. Nano Letters 2019, 19 (2), 823-828.
22. P. Srimuk, J. Lee, S. Fleischmann, S. Choudhury, N. Jäckel, M. Zeiger, C. Kim, M. Aslan, and V. Presser, Faradaic Deionization of Brackish and Sea Water Via Pseudocapacitive Cation and Anion Intercalation into Few-Layered Molybdenum Disulfide. Journal of Materials Chemistry A 2017, 5 (30), 15640-15649.
23. Y. Li, Z. Ding, J. Li, K. Wang, T. Lu, and L. Pan, Novel Membrane-Free Hybrid Capacitive Deionization with a Radical Polymer Anode for Stable Desalination. Desalination 2020, 481, 114379.
24. H. Yoon, J. Lee, S. Kim, and J. Yoon, Hybrid Capacitive Deionization with Ag Coated Carbon Composite Electrode. Desalination 2017, 422, 42-48.
25. X. Gao, A. Omosebi, Z. Ma, F. Zhu, J. Landon, M. Ghorbanian, N. Kern, and K. Liu, Capacitive Deionization Using Symmetric Carbon Electrode Pairs. Environmental Science: Water Research & Technology 2019, 5 (4), 660-671.
26. Y.-J. Chen, C.-F. Liu, C.-C. Hsu, and C.-C. Hu, An Integrated Strategy for Improving the Desalination Performances of Activated Carbon-Based Capacitive Deionization Systems. Electrochimica Acta 2019, 302, 277-285.
27. C.-C. Hsu, Y.-H. Tu, Y.-H. Yang, J.-A. Wang, and C.-C. Hu, Improved Performance and Long-Term Stability of Activated Carbon Doped with Nitrogen for Capacitive Deionization. Desalination 2020, 481, 114362.
28. Y.-H. Tu, C.-F. Liu, J.-A. Wang, and C.-C. Hu, Construction of an Inverted-Capacitive Deionization System Utilizing Pseudocapacitive Materials. Electrochemistry Communications 2019, 104, 106486.
29. P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann, N. Jäckel, M. C. Tekeli, M. Aslan, M. E. Suss, and V. Presser, MXene as a Novel Intercalation-Type Pseudocapacitive Cathode and Anode for Capacitive Deionization. Journal of Materials Chemistry A 2016, 4 (47), 18265-18271.
30. M. Li, and H. G. Park, Pseudocapacitive Coating for Effective Capacitive Deionization. ACS Applied Materials & Interfaces 2018, 10 (3), 2442-2450.
31. D.-H. Nam, and K.-S. Choi, Bismuth as a New Chloride-Storage Electrode Enabling the Construction of a Practical High Capacity Desalination Battery. Journal of the American Chemical Society 2017, 139 (32), 11055-11063.
32. F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang, and H. Y. Yang, NaTi2(PO4)3-Ag Electrodes Based Desalination Battery and Energy Recovery. FlatChem 2018, 8, 9-16.
33. J. Lee, S. Kim, C. Kim, and J. Yoon, Hybrid Capacitive Deionization to Enhance the Desalination Performance of Capacitive Techniques. Energy & Environmental Science 2014, 7 (11), 3683-3689.
34. S. Kim, J. Lee, C. Kim, and J. Yoon, Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization. Electrochimica Acta 2016, 203, 265-271.
35. S. Vafakhah, L. Guo, D. Sriramulu, S. Huang, M. Saeedikhani, and H. Y. Yang, Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. ACS Applied Materials & Interfaces 2019, 11 (6), 5989-5998.
36. F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang, and H. Y. Yang, Dual-Ions Electrochemical Deionization: A Desalination Generator. Energy & Environmental Science 2017, 10 (10), 2081-2089.
37. M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A Desalination Battery. Nano Letters 2012, 12 (2), 839-843.
38. C.-C. Hu, C.-F. Hsieh, Y.-J. Chen, and C.-F. Liu, How to Achieve the Optimal Performance of Capacitive Deionization and Inverted-Capacitive Deionization. Desalination 2018, 442, 89-98.
39. 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司: 2002.
40. J. B. Allen, and R. F. Larry, Electrochemical Methods Fundamentals and Applications. John Wiley & Sons: 2001.
41. S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, and H. Yoneda, Advanced Capacitors and Their Application. Journal of Power Sources 2001, 97, 807-811.
42. L. L. Zhang, and X. Zhao, Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
43. C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, Faradaic Reactions in Capacitive Deionization (CDI)-Problems and Possibilities: A Review. Water Research 2018, 128, 314-330.
44. A. Soffer, and M. Folman, The Electrical Double Layer of High Surface Porous Carbon Electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1972, 38 (1), 25-43.
45. E. Ayranci, and B. Conway, Adsorption and Electrosorption at High-Area Carbon-Felt Electrodes for Waste-Water Purification: Systems Evaluation with Inorganic, S-Containing Anions. Journal of Applied Electrochemistry 2001, 31 (3), 257-266.
46. J.-H. Lee, W.-S. Bae, and J.-H. Choi, Electrode Reactions and Adsorption/Desorption Performance Related to the Applied Potential in a Capacitive Deionization Process. Desalination 2010, 258 (1-3), 159-163.
47. I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environmental Science and Pollution Research 2014, 21 (14), 8336-8367.
48. X. Shi, S. Siahrostami, G.-L. Li, Y. Zhang, P. Chakthranont, F. Studt, T. F. Jaramillo, X. Zheng, and J. K. Nørskov, Understanding Activity Trends in Electrochemical Water Oxidation to Form Hydrogen Peroxide. Nature Communications 2017, 8 (1), 1-6.
49. F. C. Moreira, R. A. Boaventura, E. Brillas, and V. J. Vilar, Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Applied Catalysis B: Environmental 2017, 202, 217-261.
50. C. Barrera-Díaz, P. Canizares, F. Fernández, R. Natividad, and M. A. Rodrigo, Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents. Journal of the Mexican Chemical Society 2014, 58 (3), 256-275.
51. H. K. Abdel-Aal, S. M. Sultan, and I. A. Hussein, Parametric Study for Saline Water Electrolysis: Part Ii—Chlorine Evolution, Selectivity and Determination. International Journal of Hydrogen Energy 1993, 18 (7), 545-551.
52. R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G. Sozhan, A. K. Shukla, and S. Ravichandran, An Alternative Approach to Selective Sea Water Oxidation for Hydrogen Production. Electrochemistry Communications 2009, 11 (8), 1700-1702.
53. J. J. Lado, J. J. Wouters, M. I. Tejedor-Tejedor, M. A. Anderson, and E. García-Calvo, Asymmetric Capacitive Deionization Utilizing Low Surface Area Carbon Electrodes Coated with Nanoporous Thin-Films of Al2O3and SiO2. Journal of The Electrochemical Society 2013, 160 (8), E71-E78.
54. J. J. Wouters, J. J. Lado, M. I. Tejedor-Tejedor, R. Perez-Roa, and M. A. Anderson, Carbon Fiber Sheets Coated with Thin-Films of SiO2 and Γ-Al2O3 as Electrodes in Capacitive Deionization: Relationship between Properties of the Oxide Films and Electrode Performance. Electrochimica Acta 2013, 112, 763-773.
55. B. Shapira, E. Avraham, and D. Aurbach, Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction. Electrochimica Acta 2016, 220, 285-295.
56. D. He, C. E. Wong, W. Tang, P. Kovalsky, and T. D. Waite, Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environmental Science & Technology Letters 2016, 3 (5), 222-226.
57. T. Kim, J. Yu, C. Kim, and J. Yoon, Hydrogen Peroxide Generation in Flow-Mode Capacitive Deionization. Journal of Electroanalytical Chemistry 2016, 776, 101-104.
58. F. Xing, T. Li, J. Li, H. Zhu, N. Wang, and X. Cao, Chemically Exfoliated MoS2 for Capacitive Deionization of Saline Water. Nano Energy 2017, 31, 590-595.
59. C. Gabrielli, M. Keddam, and R. Torresi, Calibration of the Electrochemical Quartz Crystal Microbalance. Journal of the Electrochemical Society 1991, 138 (9), 2657.
60. T. Kim, and J. Yoon, Cdi Ragone Plot as a Functional Tool to Evaluate Desalination Performance in Capacitive Deionization. RSC Advances 2015, 5 (2), 1456-1461.
61. T. Kim, J. E. Dykstra, S. Porada, A. van der Wal, J. Yoon, and P. M. Biesheuvel, Enhanced Charge Efficiency and Reduced Energy Use in Capacitive Deionization by Increasing the Discharge Voltage. Journal of Colloid and Interface Science 2015, 446, 317-326.
62. Z.-H. Huang, Z. Yang, F. Kang, and M. Inagaki, Carbon Electrodes for Capacitive Deionization. Journal of Materials Chemistry A 2017, 5 (2), 470-496.
63. J.-B. Lee, K.-K. Park, H.-M. Eum, and C.-W. Lee, Desalination of a Thermal Power Plant Wastewater by Membrane Capacitive Deionization. Desalination 2006, 196 (1-3), 125-134.
64. P. Biesheuvel, and A. Van der Wal, Membrane Capacitive Deionization. Journal of Membrane Science 2010, 346 (2), 256-262.
65. R. Zhao, P. Biesheuvel, and A. Van der Wal, Energy Consumption and Constant Current Operation in Membrane Capacitive Deionization. Energy & Environmental Science 2012, 5 (11), 9520-9527.
66. Z. U. Khan, T. Yan, J. Han, L. Shi, and D. Zhang, Capacitive Deionization of Saline Water Using Graphene Nanosphere Decorated N-Doped Layered Mesoporous Carbon Frameworks. Environmental Science: Nano 2019, 6 (11), 3442-3453.
67. X. Xu, J. Tang, Y. V. Kaneti, H. Tan, T. Chen, L. Pan, T. Yang, Y. Bando, and Y. Yamauchi, Unprecedented Capacitive Deionization Performance of Interconnected Iron-Nitrogen-Doped Carbon Tubes in Oxygenated Saline Water. Materials Horizons 2020, 7 (5), 1404-1412.
68. A. G. El-Deen, N. A. Barakat, K. A. Khalil, and H. Y. Kim, Hollow Carbon Nanofibers as an Effective Electrode for Brackish Water Desalination Using the Capacitive Deionization Process. New Journal of Chemistry 2014, 38 (1), 198-205.
69. D. Ma, Y. Cai, Y. Wang, S. Xu, J. Wang, and M. U. Khan, Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process. ACS applied materials & interfaces 2019, 11 (19), 17617-17628.
70. O. ul Haq, D.-S. Choi, J.-H. Choi, and Y.-S. Lee, Carbon Electrodes with Ionic Functional Groups for Enhanced Capacitive Deionization Performance. Journal of Industrial and Engineering Chemistry 2020, 83, 136-144.
71. H. Jo, K. H. Kim, M.-J. Jung, J. H. Park, and Y.-S. Lee, Fluorination Effect of Activated Carbons on Performance of Asymmetric Capacitive Deionization. Applied Surface Science 2017, 409, 117-123.
72. Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C. Q. Sun, and L. Pan, Phosphorus-Doped 3d Carbon Nanofiber Aerogels Derived from Bacterial-Cellulose for Highly-Efficient Capacitive Deionization. Carbon 2018, 130, 377-383.
73. D. Li, X.-A. Ning, C. Yang, X. Chen, and Y. Wang, Rich Heteroatom Doping Magnetic Carbon Electrode for Flow-Capacitive Deionization with Enhanced Salt Removal Ability. Desalination 2020, 482, 114374.
74. P. Simon, and Y. Gogotsi, Materials for Electrochemical Capacitors. Nature Materials 2008, 7, 845-854.
75. M. R. Lukatskaya, B. Dunn, and Y. Gogotsi, Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage. Nature Communications 2016, 7 (1), 12647.
76. B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nature Reviews Materials 2017, 2 (2), 1-17.
77. M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, and P. Simon, Ultra-High-Rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides. Nature Energy 2017, 2 (8), 1-6.
78. H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, and Z. Tang, Three‐Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High‐Performance Capacitive Deionization of Saline Water. Advanced Materials 2013, 25 (43), 6270-6276.
79. M. C. Zafra, P. Lavela, G. Rasines, C. Macías, J. L. Tirado, and C. O. Ania, A Novel Method for Metal Oxide Deposition on Carbon Aerogels with Potential Application in Capacitive Deionization of Saline Water. Electrochimica Acta 2014, 135, 208-216.
80. P. Walker, M. Mauter, and J. Whitacre, Electrodeposited MnO2 for Pseudocapacitive Deionization: Relating Deposition Condition and Electrode Structure to Performance. Electrochimica Acta 2015, 182, 1008-1018.
81. M. Ding, S. Fan, S. Huang, M. E. Pam, L. Guo, Y. Shi, and H. Y. Yang, Tunable Pseudocapacitive Behavior in Metal-Organic Framework-Derived TiO2@Porous Carbon Enabling High-Performance Membrane Capacitive Deionization. ACS Applied Energy Materials 2019, 2 (3), 1812-1822.
82. H. Younes, F. Ravaux, N. El Hadri, and L. Zou, Nanostructuring of Pseudocapacitive MnFe2O4/Porous rGO Electrodes in Capacitive Deionization. Electrochimica Acta 2019, 306, 1-8.
83. H. Younes, and L. Zou, Asymmetric Configuration of Pseudocapacitive Composite and rGO Electrodes for Enhanced Capacitive Deionization. Environmental Science: Water Research & Technology 2020, 6 (2), 392-403.
84. S. Tian, Z. Zhang, X. Zhang, and K. Ostrikov, Capacitative Deionization Using Commercial Activated Carbon Fiber Decorated with Polyaniline. Journal of Colloid and Interface Science 2019, 537, 247-255.
85. C. Yan, L. Zou, and R. Short, Single-Walled Carbon Nanotubes and Polyaniline Composites for Capacitive Deionization. Desalination 2012, 290, 125-129.
86. C. Yan, Y. W. Kanaththage, R. Short, C. T. Gibson, and L. Zou, Graphene/Polyaniline Nanocomposite as Electrode Material for Membrane Capacitive Deionization. Desalination 2014, 344, 274-279.
87. P. Nie, J. Yan, G. Zhu, and J. Liu, Inverted Hybrid-Capacitive Deionization with Polyaniline Nanotubes Doped Activated Carbon as an Anode. Electrochimica Acta 2020, 339, 135920.
88. Y. Cai, Y. Wang, X. Han, L. Zhang, S. Xu, and J. Wang, Optimization on Electrode Assemblies Based on Ion-Doped Polypyrrole/Carbon Nanotube Composite in Capacitive Deionization Process. Journal of Electroanalytical Chemistry 2016, 768, 72-80.
89. J.-H. Kim, Y.-S. Lee, A. K. Sharma, and C. G. Liu, Polypyrrole/Carbon Composite Electrode for High-Power Electrochemical Capacitors. Electrochimica Acta 2006, 52 (4), 1727-1732.
90. K. Xu, Y. Liu, Z. An, G. Xu, A. J. Gadgil, and G. Ruan, The Polymeric Conformational Effect on Capacitive Deionization Performance of Graphene Oxide/Polypyrrole Composite Electrode. Desalination 2020, 486, 114407.
91. Q. Liu, Y. Wang, Y. Zhang, S. Xu, and J. Wang, Effect of Dopants on the Adsorbing Performance of Polypyrrole/Graphite Electrodes for Capacitive Deionization Process. Synthetic Metals 2012, 162 (7), 655-661.
92. K. Chayambuka, G. Mulder, D. L. Danilov, and P. H. Notten, Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials 2018, 8 (16), 1800079.
93. L. Chen, M. Fiore, J. E. Wang, R. Ruffo, D. K. Kim, and G. Longoni, Readiness Level of Sodium‐Ion Battery Technology: A Materials Review. Advanced Sustainable Systems 2018, 2 (3), 1700153.
94. Y. Liang, W. H. Lai, Z. Miao, and S. L. Chou, Nanocomposite Materials for the Sodium–Ion Battery: A Review. Small 2018, 14 (5), 1702514.
95. T. Kim, C. A. Gorski, and B. E. Logan, Low Energy Desalination Using Battery Electrode Deionization. Environmental Science & Technology Letters 2017, 4 (10), 444-449.
96. S. Choi, B. Chang, S. Kim, J. Lee, J. Yoon, and J. W. Choi, Battery Electrode Materials with Omnivalent Cation Storage for Fast and Charge‐Efficient Ion Removal of Asymmetric Capacitive Deionization. Advanced Functional Materials 2018, 28 (35), 1802665.
97. X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, and Z. Sha, Lithium Extraction from Brine in an Ionic Selective Desalination Battery. Desalination 2020, 481, 114360.
98. S. Porada, A. Shrivastava, P. Bukowska, P. M. Biesheuvel, and K. C. Smith, Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochimica Acta 2017, 255, 369-378.
99. A. Siekierka, B. Tomaszewska, and M. Bryjak, Lithium Capturing from Geothermal Water by Hybrid Capacitive Deionization. Desalination 2018, 436, 8-14.
100. J. Dykstra, J. Dijkstra, A. Van der Wal, H. Hamelers, and S. Porada, On-Line Method to Study Dynamics of Ion Adsorption from Mixtures of Salts in Capacitive Deionization. Desalination 2016, 390, 47-52.
101. E. N. Guyes, T. Malka, and M. E. Suss, Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes. Environmental Science & Technology 2019, 53 (14), 8447-8454.
102. W. Shi, P. Nie, X. Shang, J. Yang, Z. Xie, R. Xu, and J. Liu, Berlin Green-Based Battery Deionization-Highly Selective Potassium Recovery in Seawater. Electrochimica Acta 2019, 310, 104-112.
103. J. Pan, Y. Zheng, J. Ding, C. Gao, B. Van der Bruggen, and J. Shen, Fluoride Removal from Water by Membrane Capacitive Deionization with a Monovalent Anion Selective Membrane. Industrial & Engineering Chemistry Research 2018, 57 (20), 7048-7053.
104. P. Nie, B. Hu, X. Shang, Z. Xie, M. Huang, and J. Liu, Highly Efficient Water Softening by Mordenite Modified Cathode in Asymmetric Capacitive Deionization. Separation and Purification Technology 2020, 250, 117240.
105. K. Zuo, J. Kim, A. Jain, T. Wang, R. Verduzco, M. Long, and Q. Li, Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process. Environmental Science & Technology 2018, 52 (16), 9486-9494.
106. M. Mao, T. Yan, J. Shen, J. Zhang, and D. Zhang, Capacitive Removal of Heavy Metal Ions from Wastewater Via an Electro-Adsorption and Electro-Reaction Coupling Process. Environmental Science & Technology 2021, 55 (5), 3333-3340.
107. X. Gu, Y. Yang, Y. Hu, M. Hu, and C. Wang, Fabrication of Graphene-Based Xerogels for Removal of Heavy Metal Ions and Capacitive Deionization. ACS Sustainable Chemistry & Engineering 2015, 3 (6), 1056-1065.
108. P. Liu, T. Yan, J. Zhang, L. Shi, and D. Zhang, Separation and Recovery of Heavy Metal Ions and Salt Ions from Wastewater by 3D Graphene-Based Asymmetric Electrodes Via Capacitive Deionization. Journal of Materials Chemistry A 2017, 5 (28), 14748-14757.
109. X. Huang, X. Guo, Q. Dong, L. Liu, R. Tallon, and J. Chen, Zero-Wastewater Capacitive Deionization: Selective Removal of Heavy Metal Ions in Tap Water Assisted by Phosphate Ions. Environmental Science: Nano 2019, 6 (11), 3225-3231.
110. J. Sun, L. Liu, and F. Yang, A Wo3/Ppy/Acf Modified Electrode in Electrochemical System for Simultaneous Removal of Heavy Metal Ion Cu2+ and Organic Acid. Journal of Hazardous Materials 2020, 394, 122534.
111. G. Bharath, K. Rambabu, F. Banat, A. Hai, A. F. Arangadi, and N. Ponpandian, Enhanced Electrochemical Performances of Peanut Shell Derived Activated Carbon and Its Fe3o4 Nanocomposites for Capacitive Deionization of Cr (VI) Ions. Science of The Total Environment 2019, 691, 713-726.
112. K. Singh, G. Li, J. Lee, H. Zuilhof, B. L. Mehdi, R. L. Zornitta, and L. C. de Smet, Divalent Ion Selectivity in Capacitive Deionization with Vanadium Hexacyanoferrate: Experiments and Quantum‐Chemical Computations. Advanced Functional Materials 2021, 31 (41), 2105203.
113. W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, and G. Zeng, Various Cell Architectures of Capacitive Deionization: Recent Advances and Future Trends. Water Research 2019, 150, 225-251.
114. E. N. Guyes, A. N. Shocron, A. Simanovski, P. Biesheuvel, and M. E. Suss, A One-Dimensional Model for Water Desalination by Flow-through Electrode Capacitive Deionization. Desalination 2017, 415, 8-13.
115. E. M. Remillard, A. N. Shocron, J. Rahill, M. E. Suss, and C. D. Vecitis, A Direct Comparison of Flow-by and Flow-through Capacitive Deionization. Desalination 2018, 444, 169-177.
116. C. He, J. Ma, C. Zhang, J. Song, and T. D. Waite, Short-Circuited Closed-Cycle Operation of Flow-Electrode Cdi for Brackish Water Softening. Environmental Science & Technology 2018, 52 (16), 9350-9360.
117. J. Lee, K. Jo, J. Lee, S. P. Hong, S. Kim, and J. Yoon, Rocking-Chair Capacitive Deionization for Continuous Brackish Water Desalination. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 10815-10822.
118. A. Fombona-Pascual, N. Patil, E. García-Quismondo, N. Goujon, D. Mecerreyes, R. Marcilla, J. Palma, and J. J. Lado, A High Performance All-Polymer Symmetric Faradaic Deionization Cell. Chemical Engineering Journal 2023, 461, 142001.
119. M. T. Z. Myint, S. H. Al-Harthi, and J. Dutta, Brackish Water Desalination by Capacitive Deionization Using Zinc Oxide Micro/Nanostructures Grafted on Activated Carbon Cloth Electrodes. Desalination 2014, 344, 236-242.
120. J. Ma, C. He, D. He, C. Zhang, and T. D. Waite, Analysis of Capacitive and Electrodialytic Contributions to Water Desalination by Flow-Electrode CDI. Water Research 2018, 144, 296-303.
121. O. N. Demirer, R. M. Naylor, C. A. Rios Perez, E. Wilkes, and C. Hidrovo, Energetic Performance Optimization of a Capacitive Deionization System Operating with Transient Cycles and Brackish Water. Desalination 2013, 314, 130-138.
122. Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer, and D. Aurbach, Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes. The Journal of Physical Chemistry C 2011, 115 (33), 16567-16573.
123. X. Gao, A. Omosebi, J. Landon, and K. Liu, Surface Charge Enhanced Carbon Electrodes for Stable and Efficient Capacitive Deionization Using Inverted Adsorption–Desorption Behavior. Energy & Environmental Science 2015, 8 (3), 897-909.
124. X. Gao, A. Omosebi, J. Landon, and K. Liu, Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes. Environmental Science & Technology 2015, 49 (18), 10920-10926.
125. T. Wu, G. Wang, F. Zhan, Q. Dong, Q. Ren, J. Wang, and J. Qiu, Surface-Treated Carbon Electrodes with Modified Potential of Zero Charge for Capacitive Deionization. Water Research 2016, 93, 30-37.
126. B. Chen, Y. Wang, Z. Chang, X. Wang, M. Li, X. Liu, L. Zhang, and Y. Wu, Enhanced Capacitive Desalination of Mno 2 by Forming Composite with Multi-Walled Carbon Nanotubes. RSC Advances 2016, 6 (8), 6730-6736.
127. S. Hand, and R. D. Cusick, Characterizing the Impacts of Deposition Techniques on the Performance of MnO2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization. Environmental Science & Technology 2017, 51 (20), 12027-12034.
128. Y.-H. Chu, C.-C. Hu, and K.-H. Chang, Electrochemical Quartz Crystal Microbalance Study of Amorphous MnO2 Prepared by Anodic Deposition. Electrochimica Acta 2012, 61, 124-131.
129. M. Toupin, T. Brousse, and D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 2004, 16 (16), 3184-3190.
130. C.-C. Hu, and X.-X. Lin, Ideally Capacitive Behavior and X-Ray Photoelectron Spectroscopy Characterization of Polypyrrole. Journal of The Electrochemical Society 2002, 149 (8), A1049.
131. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting Polymers as Active Materials in Electrochemical Capacitors. Journal of Power Sources 1994, 47 (1-2), 89-107.
132. Y.-J. Peng, T.-H. Wu, C.-T. Hsu, S.-M. Li, M.-G. Chen, and C.-C. Hu, Electrochemical Characteristics of the Reduced Graphene Oxide/Carbon Nanotube/Polypyrrole Composites for Aqueous Asymmetric Supercapacitors. Journal of Power Sources 2014, 272, 970-978.
133. B. Villeret, and M. Nechtschein, Memory Effects in Conducting Polymers. Physical Review Letters 1989, 63 (12), 1285.
134. B. Muthulakshmi, D. Kalpana, S. Pitchumani, and N. Renganathan, Electrochemical Deposition of Polypyrrole for Symmetric Supercapacitors. Journal of Power Sources 2006, 158 (2), 1533-1537.
135. T. Liu, W. G. Pell, and B. E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochimica Acta 1997, 42 (23), 3541-3552.
136. T. Wu, G. Wang, S. Wang, F. Zhan, Y. Fu, H. Qiao, and J. Qiu, Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environmental Science & Technology Letters 2018, 5 (2), 98-102.
137. N. Jabeen, Q. Xia, S. V. Savilov, S. M. Aldoshin, Y. Yu, and H. Xia, Enhanced Pseudocapacitive Performance of Α-MnO2 by Cation Preinsertion. ACS Applied Materials & Interfaces 2016, 8 (49), 33732-33740.
138. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang, Enhanced Capacitive Deionization Performance of Graphene/Carbon Nanotube Composites. Journal of Materials Chemistry 2012, 22 (29), 14696-14704.
139. Y.-H. Liu, H.-C. Hsi, K.-C. Li, and C.-H. Hou, Electrodeposited Manganese Dioxide/Activated Carbon Composite as a High-Performance Electrode Material for Capacitive Deionization. ACS Sustainable Chemistry & Engineering 2016, 4 (9), 4762-4770.
140. P. Srimuk, X. Su, J. Yoon, D. Aurbach, and V. Presser, Charge-Transfer Materials for Electrochemical Water Desalination, Ion Separation and the Recovery of Elements. Nature Reviews Materials 2020, 1-22.
141. W. Shi, X. Gao, J. Mao, X. Qian, W. Liu, F. Wu, H. Li, Z. Zeng, J. Shen, and X. Cao, Exploration of Energy Storage Materials for Water Desalination Via Next-Generation Capacitive Deionization. Frontiers in Chemistry 2020, 8 (415).
142. F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng, and J. Ma, Faradaic Reactions in Capacitive Deionization for Desalination and Ion Separation. Journal of Materials Chemistry A 2019, 7 (27), 15999-16027.
143. X. Su, and T. A. Hatton, Redox-Electrodes for Selective Electrochemical Separations. Advances in Colloid and Interface Science 2017, 244, 6-20.
144. Z. Y. Leong, and H. Y. Yang, A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Applied Materials & Interfaces 2019, 11 (14), 13176-13184.
145. S. Xu, S.-P. Li, T. Wang, and C.-F. Wang, Effect of Surface Ionization of Doped MnO2 on Capacitive Deionization Efficiency. Langmuir 2019, 35 (3), 628-640.
146. L. L. Missoni, F. Marchini, M. del Pozo, and E. J. Calvo, A LiMn2O4-Polypyrrole System for the Extraction of LiCl from Natural Brine. Journal of The Electrochemical Society 2016, 163 (9), A1898-A1902.
147. Z. Wang, X. Xu, J. Kim, V. Malgras, R. Mo, C. Li, Y. Lin, H. Tan, J. Tang, and L. Pan, Nanoarchitectured Metal-Organic Framework/Polypyrrole Hybrids for Brackish Water Desalination Using Capacitive Deionization. Materials Horizons 2019, 6 (7), 1433-1437.
148. K. Kim, S. Cotty, J. Elbert, R. Chen, C. H. Hou, and X. Su, Asymmetric Redox‐Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic. Advanced Materials 2020, 32 (6), 1906877.
149. X. Su, K.-J. Tan, J. Elbert, C. Rüttiger, M. Gallei, T. F. Jamison, and T. A. Hatton, Asymmetric Faradaic Systems for Selective Electrochemical Separations. Energy & Environmental Science 2017, 10 (5), 1272-1283.
150. L. Guo, R. Mo, W. Shi, Y. Huang, Z. Y. Leong, M. Ding, F. Chen, and H. Y. Yang, A Prussian Blue Anode for High Performance Electrochemical Deionization Promoted by the Faradaic Mechanism. Nanoscale 2017, 9 (35), 13305-13312.
151. B.-H. Park, and J.-H. Choi, Improvement in the Capacitance of a Carbon Electrode Prepared Using Water-Soluble Polymer Binder for a Capacitive Deionization Application. Electrochimica Acta 2010, 55 (8), 2888-2893.
152. B.-H. Park, Y.-J. Kim, J.-S. Park, and J. Choi, Capacitive Deionization Using a Carbon Electrode Prepared with Water-Soluble Poly (Vinyl Alcohol) Binder. Journal of Industrial and Engineering Chemistry 2011, 17 (4), 717-722.
153. C. Nie, L. Pan, H. Li, T. Chen, T. Lu, and Z. Sun, Electrophoretic Deposition of Carbon Nanotubes Film Electrodes for Capacitive Deionization. Journal of Electroanalytical Chemistry 2012, 666, 85-88.
154. S. Porada, M. Bryjak, A. Van Der Wal, and P. Biesheuvel, Effect of Electrode Thickness Variation on Operation of Capacitive Deionization. Electrochimica Acta 2012, 75, 148-156.
155. T.-H. You, and C.-C. Hu, Designing Binary Ru-Sn Oxides with Optimized Performances for the Air Electrode of Rechargeable Zinc-Air Batteries. ACS Applied Materials & Interfaces 2018, 10 (12), 10064-10075.
156. C.-C. Hu, and C.-C. Wang, Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition. Journal of the Electrochemical Society 2003, 150 (8), A1079.
157. Y. Munaiah, B. G. S. Raj, T. P. Kumar, and P. Ragupathy, Facile Synthesis of Hollow Sphere Amorphous MnO2: The Formation Mechanism, Morphology and Effect of a Bivalent Cation-Containing Electrolyte on Its Supercapacitive Behavior. Journal of Materials Chemistry A 2013, 1 (13), 4300-4306.
158. C. MA, P. SG, G. PR, and S. Shashwati, Synthesis and Characterization of Polypyrrole (Ppy) Thin Films. Soft Nanoscience Letters 2011, 2011.
159. R. Kötz, and M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 2000, 45 (15), 2483-2498.
160. W. Wei, X. Cui, W. Chen, and D. G. Ivey, Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes. Chemical Society Reviews 2011, 40 (3), 1697-1721.
161. E. Kang, K. Neoh, and K. Tan, The Intrinsic Redox States in Polypyrrole and Polyaniline: A Comparative Study by Xps. Surface and Interface Analysis 1992, 19 (1‐12), 33-37.
162. B. Muthulakshmi, D. Kalpana, S. Pitchumani, and N. G. Renganathan, Electrochemical Deposition of Polypyrrole for Symmetric Supercapacitors. Journal of Power Sources 2006, 158 (2), 1533-1537.
163. J. Y. Lim, W.-k. Paik, and I.-H. Yeo, A Study of Ion Transports and Growth of Conducting Polypyrrole with Electrochemical Quartz Crystal Microbalance. Synthetic Metals 1995, 69 (1-3), 451-454.
164. G. Maia, R. M. Torresi, E. A. Ticianelli, and F. C. Nart, Charge Compensation Dynamics in the Redox Processes of Polypyrrole-Modified Electrodes. The Journal of Physical Chemistry 1996, 100 (39), 15910-15916.
165. M. N. Akieh, W. E. Price, J. Bobacka, A. Ivaska, and S. F. Ralph, Ion Exchange Behaviour and Charge Compensation Mechanism of Polypyrrole in Electrolytes Containing Mono-, Di-and Trivalent Metal Ions. Synthetic Metals 2009, 159 (23-24), 2590-2598.
166. Y.-P. Lin, C.-B. Tsai, W.-H. Ho, and N.-L. Wu, Comparative Study on Nanostructured MnO2/Carbon Composites Synthesized by Spontaneous Reduction for Supercapacitor Application. Materials Chemistry and Physics 2011, 130 (1-2), 367-372.
167. Y.-H. Tu, Y.-H. Yang, and C.-C. Hu, A Highly Efficient Faradaic Desalination System Utilizing Mno2 and Polypyrrole-Coated Titanium Electrodes. Desalination 2021, 498, 114807.
168. R. L. Zornitta, P. Srimuk, J. Lee, B. Krüner, M. Aslan, L. A. M. Ruotolo, and V. Presser, Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin‐Derived, Low‐Cost Activated Carbon Electrodes. ChemSusChem 2018, 11 (13), 2101-2113.
169. L. Chen, X. Xu, L. Wan, G. Zhu, Y. Li, T. Lu, M. D. Albaqami, L. Pan, and Y. Yamauchi, Carbon-Incorporated Fe3O4 Nanoflakes: High-Performance Faradaic Materials for Hybrid Capacitive Deionization and Supercapacitors. Materials Chemistry Frontiers 2021, 5 (8), 3480-3488.
170. R. L. Zornitta, L. A. M. Ruotolo, and L. C. P. M. de Smet, High-Performance Carbon Electrodes Modified with Polyaniline for Stable and Selective Anion Separation. Separation and Purification Technology 2022, 290, 120807.
171. L. Huang, T. Yan, A. E. D. Mahmoud, S. Li, J. Zhang, L. Shi, and D. Zhang, Enhanced Water Purification Via Redox Interfaces Created by an Atomic Layer Deposition Strategy. Environmental Science: Nano 2021, 8 (4), 950-959.
172. H. A. Abdulbari, and E. Basheer, Microfluidic Desalination: A New Era Towards Sustainable Water Resources. ChemBioEng Reviews 2021, 8 (2), 121-133.
173. H. J. Hwang, K. He, S. Gray, J. Zhang, and I. S. Moon, Direct Contact Membrane Distillation (Dcmd): Experimental Study on the Commercial PTFE Membrane and Modeling. Journal of Membrane Science 2011, 371 (1-2), 90-98.
174. B. Kim, R. Kwak, H. J. Kwon, V. S. Pham, M. Kim, B. Al-Anzi, G. Lim, and J. Han, Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination. Scientific Reports 2016, 6 (1), 1-12.
175. R.-J. Yang, C.-C. Liu, Y.-N. Wang, H.-H. Hou, and L.-M. Fu, A Comprehensive Review of Micro-Distillation Methods. Chemical Engineering Journal 2017, 313, 1509-1520.
176. L. Han, S. Galier, and H. Roux-de Balmann, Ion Hydration Number and Electro-Osmosis During Electrodialysis of Mixed Salt Solution. Desalination 2015, 373, 38-46.
177. S. H. Roelofs, B. Kim, J. C. Eijkel, J. Han, A. van den Berg, and M. Odijk, Capacitive Deionization on-Chip as a Method for Microfluidic Sample Preparation. Lab on a Chip 2015, 15 (6), 1458-1464.
178. O. N. Demirer, and C. H. Hidrovo, Laser-Induced Fluorescence Visualization of Ion Transport in a Pseudo-Porous Capacitive Deionization Microstructure. Microfluidics and Nanofluidics 2014, 16 (1-2), 109-122.
179. S. H. Roelofs, M. van Soestbergen, M. Odijk, J. C. Eijkel, and A. van den Berg, Effect of pH Waves on Capacitive Charging in Microfluidic Flow Channels. Ionics 2014, 20 (9), 1315-1322.
180. H. Lee, D. Kim, J. Y. Kang, K. W. Bong, S. H. Lee, and R. Kwak, Nonlinear Dynamics of Ion Concentration Polarization in Capacitive Deionization. Desalination 2019, 458, 14-24.
181. S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, N.-T. Wen, C.-C. M. Ma, and C.-C. Hu, Electrochemical Deposition of Nanostructured Manganese Oxide on Hierarchically Porous Graphene-Carbon Nanotube Structure for Ultrahigh-Performance Electrochemical Capacitors. Journal of Power Sources 2013, 225, 347-355.
182. R. B. Bird, Transport Phenomena. Applied Mechanics Reviews. 2002, 55 (1), R1-R4.
183. Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, and J. Wang, Performance Comparison and Energy Consumption Analysis of Capacitive Deionization and Membrane Capacitive Deionization Processes. Desalination 2013, 324, 127-133.
184. M. Zong, S. Huo, Y. Liu, X. Zhang, and K. Li, Hydrangea-Like Nitrogen-Doped Porous Carbons Derived from NH2-MIL-53 (Al) for High-Performance Capacitive Deionization. Separation and Purification Technology 2021, 256, 117818.
185. Z. Ding, X. Xu, Y. Li, K. Wang, T. Lu, and L. Pan, Significantly Improved Stability of Hybrid Capacitive Deionization Using Nickel Hexacyanoferrate/Reduced Graphene Oxide Cathode at Low Voltage Operation. Desalination 2019, 468, 114078.
186. J. T. Mueller, and S. Gasteyer, The Widespread and Unjust Drinking Water and Clean Water Crisis in the United States. Nature Communications 2021, 12 (1), 3544.
187. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, Review on Carbon-Based Composite Materials for Capacitive Deionization. RSC Advances 2015, 5 (20), 15205-15225.
188. J. Guo, X. Xu, J. P. Hill, L. Wang, J. Dang, Y. Kang, Y. Li, W. Guan, and Y. Yamauchi, Graphene–Carbon 2D Heterostructures with Hierarchically-Porous P, N-Doped Layered Architecture for Capacitive Deionization. Chemical Science 2021, 12 (30), 10334-10340.
189. H. Zhang, C. Wang, W. Zhang, M. Zhang, J. Qi, J. Qian, X. Sun, B. Yuliarto, J. Na, and T. Park, Nitrogen, Phosphorus Co-Doped Eave-Like Hierarchical Porous Carbon for Efficient Capacitive Deionization. Journal of Materials Chemistry A 2021, 9 (21), 12807-12817.
190. Y. Lian, H. Chen, Z. Cao, J. Sun, J. Zhao, and H. Zhang, Interface Functional Groups Protected by Confinement Effect for Flexible Supercapacitor and Capacitive Deionization. Desalination 2022, 532, 115758.
191. H. Zhang, F. Zhang, Y. Wei, Q. Miao, A. Li, Y. Zhao, Y. Yuan, N. Jin, and G. Li, Controllable Design and Preparation of Hollow Carbon-Based Nanotubes for Asymmetric Supercapacitors and Capacitive Deionization. ACS Applied Materials & Interfaces 2021, 13 (18), 21217-21230.
192. X. Yang, Z. Jia, W. Zhang, G. Ying, Z. Wang, Z. Lu, and J. Zhang, Facile Fabrication of Intercalation-Type Pseudocapacitive S-Ti3C2Tx/PANI/F-Ti3C2Tx Cathode for Asymmetric Capacitive Deionization. Desalination 2022, 535, 115816.
193. Y.-H. Yang, Y.-H. Tu, H.-Y. Huang, and C.-C. Hu, A High-Capacity Hybrid Desalination System Using Battery Type and Pseudocapacitive Type Electrodes. Desalination 2023, 545, 116160.
194. M.-T. Chiang, Y.-H. Tu, H.-L. Chiang, C.-C. Hu, and D.-H. Tsai, Raspberry-Structured Silver-Carbon Hybrid Nanoparticle Clusters for High-Performance Capacitive Deionization. Desalination 2021, 520, 115343.
195. N. Kim, S. P. Hong, J. Lee, C. Kim, and J. Yoon, High-Desalination Performance Via Redox Couple Reaction in the Multichannel Capacitive Deionization System. ACS Sustainable Chemistry & Engineering 2019, 7 (19), 16182-16189.
196. X. Hou, Q. Liang, X. Hu, Y. Zhou, Q. Ru, F. Chen, and S. Hu, Coupling Desalination and Energy Storage with Redox Flow Electrodes. Nanoscale 2018, 10 (26), 12308-12314.
197. J. Zhao, B. Wu, X. Huang, Y. Sun, Z. Zhao, M. Ye, and X. Wen, Efficient and Durable Sodium, Chloride‐Doped Iron Oxide‐Hydroxide Nanohybrid‐Promoted Capacitive Deionization of Saline Water Via Synergetic Pseudocapacitive Process. Advanced Science 2022, 2201678.
198. S. T. Chung, Y.-H. Tu, H.-Y. Huang, C.-C. Hu, and D.-H. Tsai, Aerosol Synthesis of Vanadium Oxide-Carbon Hybrid Nanoparticle Clusters for High-Performance Lithium Extraction Via Electrochemical Deionization. ACS Sustainable Chemistry & Engineering 2022, 10 (48), 15777-15790.
199. R. Chen, X. Deng, C. Wang, J. Du, Z. Zhao, W. Shi, J. Liu, and F. Cui, A Newly Designed Graphite-Polyaniline Composite Current Collector to Enhance the Performance of Flow Electrode Capacitive Deionization. Chemical Engineering Journal 2022, 435, 134845.
200. J. Ai, J. Li, K. Li, F. Yu, and J. Ma, Highly Flexible, Self-Healable and Conductive Poly (Vinyl Alcohol)/Ti3C2Tx MXene Film and It’s Application in Capacitive Deionization. Chemical Engineering Journal 2021, 408, 127256.
201. H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-T. Lu, and C.-C. Hu, Dopant-Designed Conducting Polymers for Constructing a High-Performance, Electrochemical Deionization System Achieving Low Energy Consumption and Long Cycle Life. Chemical Engineering Journal 2023, 457, 141373.
202. Z. Li, S. Mao, Y. Yang, Z. Sun, and R. Zhao, Controllable Synthesis of a Hollow Core-Shell Co-Fe Layered Double Hydroxide Derived from Co-MOF and Its Application in Capacitive Deionization. Journal of Colloid and Interface Science 2021, 585, 85-94.
203. C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, Comparison of Faradaic Reactions in Flow-through and Flow-by Capacitive Deionization (CDI) Systems. Electrochimica Acta 2019, 299, 727-735.
204. Q. Wu, D. Liang, S. Lu, H. Wang, Y. Xiang, D. Aurbach, E. Avraham, and I. Cohen, Advances and Perspectives in Integrated Membrane Capacitive Deionization for Water Desalination. Desalination 2022, 542, 116043.
205. C. Zhang, J. Ma, L. Wu, J. Sun, L. Wang, T. Li, and T. D. Waite, Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environmental Science & Technology 2021, 55 (8), 4243-4267.
206. F. Yang, Y. He, L. Rosentsvit, M. E. Suss, X. Zhang, T. Gao, and P. Liang, Flow-Electrode Capacitive Deionization: A Review and New Perspectives. Water Research 2021, 200, 117222.
207. Y.-H. Tu, Y.-C. Tai, J.-Y. Xu, Y.-H. Yang, H.-Y. Huang, J.-H. Huang, and C.-C. Hu, Highly Efficient Water Purification Devices Utilizing the Microfluidic Electrochemical Deionization Technique. Desalination 2022, 538, 115928.
208. S.-J. Seo, H. Jeon, J. K. Lee, G.-Y. Kim, D. Park, H. Nojima, J. Lee, and S.-H. Moon, Investigation on Removal of Hardness Ions by Capacitive Deionization (CDI) for Water Softening Applications. Water Research 2010, 44 (7), 2267-2275.
209. J. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. Suss, P. Liang, P. Biesheuvel, R. L. Zornitta, and L. C. P. M. de Smet, Recent Advances in Ion Selectivity with Capacitive Deionization. Energy & Environmental Science 2021, 14 (3), 1095-1120.
210. K. Singh, Z. Qian, P. M. Biesheuvel, H. Zuilhof, S. Porada, and L. C. P. M. de Smet, Nickel Hexacyanoferrate Electrodes for High Mono/Divalent Ion-Selectivity in Capacitive Deionization. Desalination 2020, 481, 114346.
211. S. Santangelo, F. Pantò, C. Triolo, S. Stelitano, P. Frontera, F. Fernández-Carretero, I. Rincon, P. Azpiroz, A. García-Luis, and Y. Belaustegui, Evaluation of the Electrochemical Performance of Electrospun Transition Metal Oxide-Based Electrode Nanomaterials for Water CDI Applications. Electrochimica Acta 2019, 309, 125-139.
212. W. Wang, Z. Liu, Z. Zhang, and H. Li, Highly Efficient Capacitive Deionization Enabled by NiCO4MnO8.5 Electrodes. Global Challenges 2022, 6 (2), 2100095.
213. W. Xi, J. Jin, Y. Zhang, R. Wang, Y. Gong, B. He, and H. Wang, Hierarchical MXene/Transition Metal Oxide Heterostructures for Rechargeable Batteries, Capacitors, and Capacitive Deionization. Nanoscale 2022, 14 (33), 11923-11944.
214. B. Zhang, A. Boretti, and S. Castelletto, MXene Pseudocapacitive Electrode Material for Capacitive Deionization. Chemical Engineering Journal 2022, 134959.
215. A. S. Yasin, A. Y. Mohamed, I. M. Mohamed, D.-Y. Cho, C. H. Park, and C. S. Kim, Theoretical Insight into the Structure-Property Relationship of Mixed Transition Metal Oxides Nanofibers Doped in Activated Carbon and 3D Graphene for Capacitive Deionization. Chemical Engineering Journal 2019, 371, 166-181.
216. X. Hu, X. Min, X. Li, M. Si, L. Liu, J. Zheng, W. Yang, and F. Zhao, Co-Co3O4 Encapsulated in Nitrogen-Doped Carbon Nanotubes for Capacitive Desalination: Effects of Nano-Confinement and Cobalt Speciation. Journal of Colloid and Interface Science 2022, 616, 389-400.
217. M. Hosseinzadeh, S. A. Mozaffari, and F. Ebrahimi, Porous 3D-Graphene Functionalized with MnO2 Nanospheres and Nio Nanoparticles as Highly Efficient Electrodes for Asymmetric Capacitive Deionization: Evaluation by Impedance-Derived Capacitance Spectroscopy. Electrochimica Acta 2022, 427, 140844.
218. Z. Liu, L. Qin, B. Lu, X. Wu, S. Liang, and J. Zhou, Issues and Opportunities Facing Aqueous Mn2+/MnO2‐Based Batteries. ChemSusChem 2022, e202200348.
219. J.-A. Wang, C.-C. M. Ma, and C.-C. Hu, Constructing a High-Performance Quasi-Solid-State Asymmetric Supercapacitor: NaxMnO2@CNT/WPU-PAAK-Na2SO4/AC-CNT. Electrochimica Acta 2020, 334, 135576.
220. C.-C. Hu, C.-Y. Hung, K.-H. Chang, and Y.-L. Yang, A Hierarchical Nanostructure Consisting of Amorphous MnO2, Mn3O4 Nanocrystallites, and Single-Crystalline Mnooh Nanowires for Supercapacitors. Journal of Power Sources 2011, 196 (2), 847-850.
221. D. Majumdar, Review on Current Progress of MnO2‐Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem 2021, 8 (2), 291-336.
222. I. Siriwardane, N. Rathuwadu, D. Dahanayake, C. Sandaruwan, R. M. de Silva, and K. N. de Silva, Nano-Manganese Oxide and Reduced Graphene Oxide-Incorporated Polyacrylonitrile Fiber Mats as an Electrode Material for Capacitive Deionization (CDI) Technology. Nanoscale Advances 2021, 3 (9), 2585-2597.
223. X. Xu, C. Li, C. Wang, L. Ji, Y. V. Kaneti, H. Huang, T. Yang, K. C.-W. Wu, and Y. Yamauchi, Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water. ACS Sustainable Chemistry & Engineering 2019, 7 (16), 13949-13954.
224. P.-Y. Chen, A. Adomkevicius, Y.-T. Lu, S.-C. Lin, Y.-H. Tu, and C.-C. Hu, The Ultrahigh-Rate Performance of Alkali Ion-Pre-Intercalated Manganese Oxides in Aqueous Li2SO4, Na2SO4, K2SO4 and MgSO4 Electrolytes. Journal of The Electrochemical Society 2019, 166 (10), A1875.
225. Z. Liu, W. Zhou, J. He, H. Chen, R. Zhang, Q. Wang, Y. Wang, Y. Yan, and Y. Chen, Binder-Free MnO2 as a High Rate Capability Cathode for Aqueous Magnesium Ion Battery. Journal of Alloys and Compounds 2021, 869, 159279.
226. C. Zuo, F. Xiong, J. Wang, Y. An, L. Zhang, and Q. An, MnO2 Polymorphs as Cathode Materials for Rechargeable Ca‐Ion Batteries. Advanced Functional Materials 2022, 2202975.
227. J. Burgess, Ions in Solution: Basic Principles of Chemical Interactions. Elsevier: 1999.
228. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chemical Society Reviews 2015, 44 (21), 7484-7539.
229. E. R. Nightingale, Jr., Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. The Journal of Physical Chemistry 1959, 63 (9), 1381-1387.
230. J. G. Speight, Lange's Handbook of Chemistry. McGraw-Hill Education: 2017.
231. A. Volkov, S. Paula, and D. Deamer, Two Mechanisms of Permeation of Small Neutral Molecules and Hydrated Ions across Phospholipid Bilayers. Bioelectrochemistry and Bioenergetics 1997, 42 (2), 153-160.
232. R. Zhao, M. van Soestbergen, H. H. M. Rijnaarts, A. van der Wal, M. Z. Bazant, and P. M. Biesheuvel, Time-Dependent Ion Selectivity in Capacitive Charging of Porous Electrodes. Journal of Colloid and Interface Science 2012, 384 (1), 38-44.
233. Y. Xu, S. Xiang, H. Zhou, G. Wang, H. Zhang, and H. Zhao, Intrinsic Pseudocapacitive Affinity in Manganese Spinel Ferrite Nanospheres for High-Performance Selective Capacitive Removal of Ca2+ and Mg2+. ACS Applied Materials & Interfaces 2021, 13 (32), 38886-38896.
234. B. W. Byles, B. Hayes-Oberst, and E. Pomerantseva, Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS Applied Materials & Interfaces 2018, 10 (38), 32313-32322.
235. R. Cao, P. Zhang, Y. Liu, and X. Zheng, Ammonium-Treated Birnessite-Type MnO2 to Increase Oxygen Vacancies and Surface Acidity for Stably Decomposing Ozone in Humid Condition. Applied Surface Science 2019, 495, 143607.
236. J. Ma, R. Zhou, and F. Yu, Hotspots and Future Trends of Capacitive Deionization Technology: A Bibliometric Review. Desalination 2024, 571, 117107.
237. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy & Environmental Science 2014, 7 (5), 1597-1614.
238. Z. Xu, P. Zhang, P. Lin, S. Liu, X. Qiu, C. Li, and K. Li, Redox Transformation of Bismuth Active Units Encapsulated on Carbon Nanorods for Efficient Fluoride Electrosorption: Synergistic Roles of Faradaic Effect and Edl Capacitance. Chemical Engineering Journal 2024, 489, 151282.
239. T. Brezesinski, J. Wang, J. Polleux, B. Dunn, and S. H. Tolbert, Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors. Journal of the American Chemical Society 2009, 131 (5), 1802-1809.
240. J. S. Kang, S. Kim, J. Kang, H. Joo, J. Jang, K. Jo, S. Park, H.-i. Kim, S. J. Yoo, and J. Yoon, Surface Electrochemistry of Carbon Electrodes and Faradaic Reactions in Capacitive Deionization. Environmental Science & Technology 2022, 56 (17), 12602-12612.
241. Y. Liu, X. Du, Z. Wang, L. Wang, Z. Liu, W. Shi, R. Zheng, X. Dou, H. Zhu, and X. Yuan, Layered Double Hydroxide Coated Electrospun Carbon Nanofibers as the Chloride Capturing Electrode for Ultrafast Electrochemical Deionization. Journal of Colloid and Interface Science 2022, 609, 289-296.
242. C. Chen, L. Men, A. Liu, S. Yu, J. Zhou, Z. Wei, and D. Ju, Enhanced Electrochemical and Capacitive Deionization Performances of Single-Layer Graphene Oxide/Nitrogen-Doped Porous Carbon/Activated Carbon Fiber Composite Electrodes. Journal of Environmental Chemical Engineering 2022, 10 (6), 108696.
243. Y.-H. Tu, H.-Y. Huang, Y.-H. Yang, C.-Y. Lai, C.-W. Tai, and C.-C. Hu, Comprehensive Study on the Ion-Selective Behavior of MnOX for Electrochemical Deionization. ACS Applied Materials & Interfaces 2023, 15 (40), 46812-46828.
244. S. Sahin, H. Zuilhof, R. L. Zornitta, and L. C. P. M. de Smet, Enhanced Monovalent over Divalent Cation Selectivity with Polyelectrolyte Multilayers in Membrane Capacitive Deionization Via Optimization of Operational Conditions. Desalination 2022, 522, 115391.
245. J. J. Lado, E. García-Quismondo, A. Fombona-Pascual, A. Mavrandonakis, C. de la Cruz, F. E. Oropeza, V. A. de la Peña O'Shea, L. C. P. M. de Smet, and J. Palma, Tuning Mono-Divalent Cation Water Composition by the Capacitive Ion-Exchange Mechanism. Water Research 2024, 255, 121469.
246. H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-A. Chen, W.-L. Lee, M.-F. Wu, H.-H. Chou, and C.-C. Hu, Probing Host-Dopant Interactions in Conducting Polymers for Improved Performance of Electrochemical Deionization. Journal of Materials Chemistry A 2024. 12, 4312-4324
247. Z. Tang, B. Hu, P. Nie, X. Shang, J. Yang, and J. Liu, Bimetallic Fe, Ni-PBA on Hollow Graphite Tube for Capacitive Deionization with Exceptional Stability. Chemical Engineering Journal 2023, 466, 143216.
248. F. Meng, Z. Ding, X. Xu, Y. Liu, T. Lu, and L. Pan, Metal Organic Framework-Derived Nitrogen-Doped Porous Carbon Sustained Prussian Blue Analogues for Efficient and Fast Hybrid Capacitive Deionization. Separation and Purification Technology 2023, 317, 123899.
249. N. E. Mansoor, L. A. Diaz, C. E. Shuck, Y. Gogotsi, T. E. Lister, and D. Estrada, Removal and Recovery of Ammonia from Simulated Wastewater Using Ti3C2TX MXene in Flow Electrode Capacitive Deionization. npj Clean Water 2022, 5 (1), 26.
250. S. Zhang, X. Xu, X. Liu, Q. Yang, N. Shang, X. Zhao, X. Zang, C. Wang, Z. Wang, and J. G. Shapter, Heterointerface Optimization in a Covalent Organic Framework-on-MXene for High-Performance Capacitive Deionization of Oxygenated Saline Water. Materials Horizons 2022, 9 (6), 1708-1716.
251. C. Wang, R. Li, Y. Xu, Z. Ma, Y. Qiu, C. Wang, L.-F. Ren, and J. Shao, Effective Electrosorption and Recovery of Phosphorus by Capacitive Deionization with a Covalent Organic Framework-Membrane Coating Electrode. Desalination 2024, 570, 117088.
252. L. Xu, Y. Liu, X. Xuan, X. Xu, Y. Li, T. Lu, and L. Pan, Heterointerface Regulation of Covalent Organic Framework-Anchored Graphene Via a Solvent-Free Strategy for High-Performance Supercapacitor and Hybrid Capacitive Deionization Electrodes. Materials Horizons 2024.
253. O. Nwokonkwo, V. Pelletier, M. Broud, and C. Muhich, Functionalized Ferrocene Enables Selective Electrosorption of Arsenic Oxyanions over Phosphate-A DFT Examination of the Effects of Substitutional Moieties, pH, and Oxidation State. The Journal of Physical Chemistry A 2023, 127 (37), 7727-7738.
254. Z. Xing, X. Xuan, H. Hu, M. Li, H. Gao, A. Alowasheeir, D. Jiang, L. Zhu, Z. Li, and Y. Kang, Particle Size Optimization of Metal-Organic Frameworks for Superior Capacitive Deionization in Oxygenated Saline Water. Chemical Communications 2023, 59 (30), 4515-4518.
255. Q. Li, X. Xu, J. Guo, J. P. Hill, H. Xu, L. Xiang, C. Li, Y. Yamauchi, and Y. Mai, Two‐Dimensional MXene‐Polymer Heterostructure with Ordered in‐Plane Mesochannels for High‐Performance Capacitive Deionization. Angewandte Chemie 2021, 133 (51), 26732-26738.
256. Y.-J. Kim, and J.-H. Choi, Improvement of Desalination Efficiency in Capacitive Deionization Using a Carbon Electrode Coated with an Ion-Exchange Polymer. Water Research 2010, 44 (3), 990-996.
257. D. Ma, Y. Wang, Y. Cai, S. Xu, and J. Wang, Multifunctional Group Sulfobutyl Ether Β-Cyclodextrin Polymer Treated Cnt as the Cathode for Enhanced Performance in Asymmetric Capacitive Deionization. Electrochimica Acta 2019, 313, 321-330.
258. S. Kivelson, and A. Heeger, Intrinsic Conductivity of Conducting Polymers. Synthetic Metals 1988, 22 (4), 371-384.
259. E. Kang, K. Neoh, and K. Tan, Polyaniline: A Polymer with Many Interesting Intrinsic Redox States. Progress in Polymer Science 1998, 23 (2), 277-324.
260. Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured Conductive Polymers for Advanced Energy Storage. Chemical Society Reviews 2015, 44 (19), 6684-6696.
261. T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu, B. H. Savitzky, X. Zhao, Y. Lu, Y. Fu, and C. Ophus, Formation of Hierarchically Ordered Structures in Conductive Polymers to Enhance the Performances of Lithium-Ion Batteries. Nature Energy 2023, 8 (2), 129-137.
262. X. Chen, C. Zhao, K. Yang, S. Sun, J. Bi, N. Zhu, Q. Cai, J. Wang, and W. Yan, Conducting Polymers Meet Lithium-Sulfur Batteries: Progress, Challenges, and Perspectives. Energy & Environmental Materials 2023, 6 (5), e12483.
263. S. Jadoun, J. P. Fuentes, B. F. Urbano, and J. Yáñez, A Review on Adsorption of Heavy Metals from Wastewater Using Conducting Polymer-Based Materials. Journal of Environmental Chemical Engineering 2023, 11 (1), 109226.
264. W. Kong, X. Ge, M. Yang, Q. Zhang, J. Lu, H. Wen, H. Wen, D. Kong, M. Zhang, and X. Zhu, Poly-p-Phenylene as a Novel Pseudocapacitive Anode or Cathode Material for Hybrid Capacitive Deionization. Desalination 2023, 553, 116452.
265. H. C. Kang, and K. Geckeler, Enhanced Electrical Conductivity of Polypyrrole Prepared by Chemical Oxidative Polymerization: Effect of the Preparation Technique and Polymer Additive. Polymer 2000, 41 (18), 6931-6934.
266. L. Bay, N. Mogensen, S. Skaarup, P. Sommer-Larsen, M. Jørgensen, and K. West, Polypyrrole Doped with Alkyl Benzenesulfonates. Macromolecules 2002, 35 (25), 9345-9351.
267. Y. Wang, L. Zhang, Y. Wu, S. Xu, and J. Wang, Polypyrrole/Carbon Nanotube Composites as Cathode Material for Performance Enhancing of Capacitive Deionization Technology. Desalination 2014, 354, 62-67.
268. M. Shen, Y. Han, X. Lin, B. Ding, L. Zhang, and X. Zhang, Preparation and Electrochemical Performances of Porous Polypyrrole Film by Interfacial Polymerization. Journal of Spplied Polymer Science 2013, 127 (4), 2938-2944.
269. M. S. Ting, B. N. Narasimhan, J. Travas-Sejdic, and J. Malmström, Soft Conducting Polymer Polypyrrole Actuation Based on Poly(N-Isopropylacrylamide) Hydrogels. Sensors and Actuators B: Chemical 2021, 343, 130167.
270. J. Casanova-Chafer, P. Umek, S. Acosta, C. Bittencourt, and E. Llobet, Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS Applied Materials & Interfaces 2021, 13 (34), 40909-40921.
271. S. Haldar, D. Rase, P. Shekhar, C. Jain, C. P. Vinod, E. Zhang, L. Shupletsov, S. Kaskel, and R. Vaidhyanathan, Incorporating Conducting Polypyrrole into a Polyimide Cof for Carbon‐Free Ultra‐High Energy Supercapacitor. Advanced Energy Materials 2022, 12 (34), 2200754.
272. H. Mao, Y. Fu, H. Yang, S. Zhang, J. Liu, S. Wu, Q. Wu, T. Ma, and X.-M. Song, Structure-Activity Relationship toward Electrocatalytic Nitrogen Reduction of MoS2 Growing on Polypyrrole/Graphene Oxide Affected by Pyridinium-Type Ionic Liquids. Chemical Engineering Journal 2021, 425, 131769.
273. D. Roy, S. Sarkar, K. Bhattacharjee, K. Panigrahi, B. K. Das, K. Sardar, S. Sarkar, and K. K. Chattopadhyay, Site Specific Nitrogen Incorporation in Reduced Graphene Oxide Using Imidazole as a Novel Reducing Agent for Efficient Oxygen Reduction Reaction and Improved Supercapacitive Performance. Carbon 2020, 166, 361-373.
274. J. Hazarika, and A. Kumar, Controllable Synthesis and Characterization of Polypyrrole Nanoparticles in Sodium Dodecylsulphate (SDS) Micellar Solutions. Synthetic Metals 2013, 175, 155-162.
275. U. Carragher, and C. B. Breslin, Polypyrrole Doped with Dodecylbenzene Sulfonate as a Protective Coating for Copper. Electrochimica Acta 2018, 291, 362-372.
276. A. L. Pang, A. Arsad, M. Ahmadipour, A. Azlan Hamzah, M. A. Ahmad Zaini, and R. Mohsin, High Efficient Degradation of Organic Dyes by Polypyrrole‐Multiwall Carbon Nanotubes Nanocomposites. Polymers for Advanced Technologies 2022, 33 (5), 1402-1411.
277. S. Zhang, Y. Wang, L. Zhang, R. Fang, and J. Li, Ion-Doped Polypyrrole Coupled Core-Shell Hierarchical Porous Carbon Electrode Material with High Desalination Capacity for Capacitive Deionization. Journal of Environmental Chemical Engineering 2023, 11 (3), 109684.
278. Y. Zhao, Y. Cai, Y. Wang, and S. Xu, A Win-Win Strategy of Β-Cyclodextrin and Ion-Doped Polypyrrole Composite Nanomaterials for Asymmetric Capacitive Deionization. Separation and Purification Technology 2021, 259, 118175.
279. S. Chauhan, and K. Sharma, Effect of Temperature and Additives on the Critical Micelle Concentration and Thermodynamics of Micelle Formation of Sodium Dodecyl Benzene Sulfonate and Dodecyltrimethylammonium Bromide in Aqueous Solution: A Conductometric Study. The Journal of Chemical Thermodynamics 2014, 71, 205-211.
280. D. C. H. Cheng, and E. Gulari, Micellization and Intermicellar Interactions in Aqueous Sodium Dodecyl Benzene Sulfonate Solutions. Journal of Colloid and Interface Science 1982, 90 (2), 410-423.
281. Y. Cai, W. Zhang, J. Zhao, and Y. Wang, Flexible Structural Construction of the Ternary Composite Ni, Co-Prussian Blue Analogue@MXene/Polypyrrole for High-Capacity Capacitive Deionization. Applied Surface Science 2023, 622, 156926.
282. L. Zhang, Y. Cai, R. Fang, Y. Wang, and S. Xu, Construction of Fully Coated Polypyrrole Oxygen-Barrier Film Based on MXene Nanosheets for High Reliability Capacitive Deionization. Separation and Purification Technology 2024, 337, 126362.
283. W. Xu, C. Tan, A. Wang, S. Hu, L. Deng, S. Boles, K. Sun, B. Li, and H. Hu, Interlayer Structure and Chemistry Engineering of MXene-Based Anode for Effective Capture of Chloride Anions in Asymmetric Capacitive Deionization. ACS Applied Materials & Interfaces 2023, 15 (12), 16266-16276.
284. G. Tan, S. Lu, N. Xu, D. Gao, and X. Zhu, Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO2 Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. Environmental Science & Technology 2020, 54 (9), 5843-5852.
285. Y. Ren, F. Yu, X.-G. Li, B. Yuliarto, X. Xu, Y. Yamauchi, and J. Ma, Soft–Hard Interface Design in Super-Elastic Conductive Polymer Hydrogel Containing Prussian Blue Analogues to Enable Highly Efficient Electrochemical Deionization. Materials Horizons 2023, 10 (9), 3548-3558.
286. J. Guo, Y. Wang, H. Zhang, Y. Cai, and R. Fang, Hollow Core-Shell Pani-Encapsuled Ni-Prussian Blue Analogue (H-NP@PANI) with Omnidirectional Conductive Layer for Efficient Capacitive Desalination. Desalination 2023, 548, 116305.
287. C. N. Hong, A. B. Crom, J. I. Feldblyum, and M. R. Lukatskaya, Metal-Organic Frameworks for Fast Electrochemical Energy Storage: Mechanisms and Opportunities. Chem 2023, 9 (4), 798-822.