簡易檢索 / 詳目顯示

研究生: 蔡政倫
Tsai, Cheng-Lun
論文名稱: 矽基板氮化鎵高頻電容性元件及主動元件設計與製作
Design and Fabrication of GaN on Si Capacitance and Active Devices
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 連羿韋
Lian, Yi-Wei
章殷誠
Chang, Yin-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 氮化鎵高頻元件高電子遷移率電晶體高頻模擬被動元件功率元件
外文關鍵詞: GaN, High frequency device, Passive device, HEMTs, Power device, High frequency simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氮化鎵材料有著寬能隙、良好的熱傳導特性及高臨界電場等優點,讓氮化鎵成為高頻功率元件材料的首選,在傳統的HEMT製程中,通常是使用鈦(Ti)/鋁(Al)/鎳(Ni)/金(Au)作為歐姆接觸的金屬結構,並使用鎳(Ni)/金(Au)作為蕭特基閘極的金屬結構,使用金能夠大幅降低歐姆接觸的電阻同時具備良好的抗氧化能力,然而金的價格昂貴,在退火之後表面型態會變得非常粗糙,並且在大部分的機台中,金被視為高汙染性金屬而被禁止進入腔體,導致含有金的元件製程會受到限制,因此找到新的金屬製程取代金成為當前的重要課題。
      本次研究以Ti/Al取代傳統的Ti/Al/Ni/Au歐姆接觸,並製作了線寬達到0.2μm的multi-finger gate,為了設計高頻電路,將主動元件的製程整合無金被動元件製程,設計出能夠應用於5G通訊頻段的傳輸線及電容,並建構了被動元件的模擬環境,電容的容值誤差達到10%,傳輸線特徵阻抗的誤差達到6%,電路的虛部值誤差達到4%。
      本次研究設計出50Ω及75Ω特徵阻抗傳輸線,電容部分可應用的容值範圍為0.22pF至3.4pF,可應用最高頻率可達25GHz。主動元件的電流密度達到251 mA/mm,gm達到75.3 ms/mm,fT達到30.6GHz,fmax達到14.4GHz,在功率量測部分,Pout最大可以達到18.72dBm,Gain最大可達到13.06dB,PAE最大可以達到24.56%。


      Gallium Nitride (GaN)-based materials have the advantages of wide band gap, high electron saturation velocity, high critical electric field and low on-resistance. Therefore, GaN-based devices have received considerable attention in high power and high frequency applications. In conventional HEMT process flow, Ti/Al/Ni/Au metal stack is usually used as ohmic contact’s metal stack, Ni/Au metal stack is usually used as schottky gate’s metal stack. Au has the advantages of low resistivity and Anti-oxidant capacity. However, Au’s price is more expensive than other metal material, and Au’s surface will be rough after high temperature annealing, either. In addition, many process machines prohibit Au entry because of Au’s high pollution, confining the device’s process which contains Au. Therefore, discovering the new metal process for replacing Au is the important current issue.
      In this work, we replace the traditional Ti/Al/Ni/Au ohmic contact with Ti/Al metal stacks, and we fabricate 0.2μm multi-finger gate. To design high frequency circuit, we integrate active device process with Au-free passive device process, designing capacitors and transmission lines which can be used in 5G frequency band, and we also build the simulation environment. Compared to the real data, capacitance’s deviation is 10%, deviation of transmission line’s characteristic impedance deviation is 6%, deviation of circuit’s imaginary part is 4%.
      In this work, we design 50Ω and 75Ω characteristics impedance transmission line, In the part of capacitor, capacitance from 0.22pF to 3.4pF can be operated, and the highest applicable frequency can reach 25GHz. In active device part, the maximum current density IDmax, maximum transconductance gm, current gain cutoff frequency fT, maximum oscillation frequency fmax, maximum output power Pout, maximum power gain and maximum power added efficiency PAE are 251mA/mm, 75.3ms/mm, 30.6GHz, 14.4GHz, 18.72dBm, 13.06dB and 24.56%.

    目錄 摘要 i Abstract ii 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 - 1 - 1.1 研究動機 - 1 - 1.2 論文架構 - 2 - 第二章 AlGaN/GaN原理簡介 - 3 - 2.1 氮化鎵材料特性 - 3 - 2.1.1 電子飽和速度 - 4 - 2.1.2 臨界崩潰電壓與導通電阻 - 5 - 2.2 AlGaN/GaN 異質接面原理 - 6 - 2.2.1 自發性極化效應 - 7 - 2.2.2 壓電極化效應 - 8 - 2.3 本章總結 - 9 - 第三章 被動元件 - 10 - 3.1 傳輸線模型 - 10 - 3.2 被動元件製程 - 12 - 3.2.1 離子佈植 (Ar Implant) - 13 - 3.2.2 鈍化層製作 (1st Passivation) - 15 - 3.2.3 第一層金屬製作 (Metal 1) - 16 - 3.2.4 襯墊層製作 (2nd Passivation) - 19 - 3.2.5 接線窗口蝕刻 (Via 1) - 21 - 3.2.6 第二層金屬製作 (Metal 2) - 24 - 3.2.7 鈍化層製作 (3rd Passivation) - 27 - 3.2.8 接線窗口蝕刻 (Via 2) - 28 - 3.3 高頻參數萃取 (De-embedding) - 30 - 3.3.1 De-embedding原理 - 30 - 3.3.2 電容De-embedding - 32 - 3.4 本章總結 - 37 - 第四章 主動元件 - 38 - 4.1 主動元件製程步驟 - 38 - 4.1.1 元件隔離平台 (Mesa Isolation) - 38 - 4.1.2 歐姆接觸 (Ohmic Contact) - 40 - 4.1.3 閘極製作 (Gate) - 42 - 4.1.4 鈍化層製作 (1st Passivation) - 44 - 4.1.5 接線窗口蝕刻 (Via 1) - 45 - 4.1.6 第一層金屬製作 (Metal 1) - 46 - 4.1.7 襯墊層製作 (2nd Passivation) - 48 - 4.1.8 接線窗口蝕刻 (Via 2) - 48 - 4.1.9 第二層金屬製作 (Metal 2) - 50 - 4.1.10 鈍化層製作 (3rd Passivation) - 51 - 4.1.11 接線窗口蝕刻 (Via 3) - 52 - 4.2 元件SEM及顯微鏡圖 - 54 - 4.3 Ohmic Contact Resistance - 57 - 4.4 本章總結 - 58 - 第五章 量測結果與分析 - 59 - 5.1 傳輸線模擬 - 59 - 5.1.1 傳輸線量測結果 - 63 - 5.2 電容量測結果 - 77 - 5.2.1 電容模擬結果比較 - 86 - 5.2.2電路模擬結果比較 - 91 - 5.2.3電容並聯結果比較 - 96 - 5.3主動元件電性分析 - 100 - 5.3.1直流量測結果 - 100 - 5.3.2功率量測結果 - 104 - 5.4 Comparison - 108 - 5.5 本章總結 - 109 - 第六章 總結 - 110 - 6.1 總結 - 110 - 6.2 未來展望 - 111 - References - 112 - 圖目錄 圖2-1 常見的半導體材料的電子飽和速度與電場關係圖[12] - 4 - 圖2-2 Si、SiC及GaN特性導通電阻與臨界崩潰電壓關係圖 - 5 - 圖2-3 氮化鋁鎵與氮化鎵接面二維電子氣示意圖 - 7 - 圖2-4 氮化鎵氮原子面與鎵原子面纖新礦結構圖[15] - 8 - 圖2-5 AlGaN/GaN 拉伸應變造成的極化向量[16] - 9 - 圖2-6 AlGaN/GaN異質接面極化效應與能帶模擬[17] - 9 - 圖3-1 傳輸線等校電路模型 - 10 - 圖3-2 GaN on Silicon基板結構 - 13 - 圖3-3 離子佈植製程示意圖 - 14 - 圖3-4 1st Passivation製程完成後示意圖 - 15 - 圖3-5 電容Metal 1光罩圖 - 17 - 圖3-6 Metal 1完成後電容顯微鏡圖 - 17 - 圖3-7 電容Metal 1 3D圖 - 18 - 圖3-8 傳輸線Metal 1光罩圖 - 18 - 圖3-9 傳輸線Metal 1 3D圖 - 18 - 圖3-10 第一層金屬製程完成後示意圖 - 19 - 圖3-11 襯墊層完成後示意圖 - 20 - 圖3-12 電容Via 1光罩圖案 - 22 - 圖3-13 電容Via 1 3D圖 - 22 - 圖3-14傳輸線Via 1光罩圖案 - 23 - 圖3-15傳輸線Via 1 3D圖 - 23 - 圖3-16 Via 1完成後示意圖 - 23 - 圖3-17電容Metal 2光罩圖 - 24 - 圖3-18電容Metal 2 3D圖 - 25 - 圖3-19傳輸線Metal 2光罩圖 - 25 - 圖3-20傳輸線Metal 2 3D圖 - 25 - 圖3-21 Metal 2完成後電容顯微鏡圖 - 26 - 圖3-22 Metal 2完成後示意圖 - 26 - 圖3-23 3rd Passivation完成後示意圖 - 27 - 圖3-24電容Via 2光罩圖 - 28 - 圖3-25傳輸線Via 2光罩圖 - 29 - 圖3-26 Via 2完成後示意圖 - 29 - 圖3-27 量測元件的等校電路模型 - 31 - 圖3-28 扣除Y參數之後的等校電路模型 - 31 - 圖3-29 扣除Z參數之後的等校電路模型 - 31 - 圖3-30 電容光罩圖案 - 32 - 圖3-31 open pad光罩圖案 - 33 - 圖3-32 open pad smith chart - 33 - 圖3-33 short光罩圖案 - 34 - 圖3-34 short pad光罩圖案 - 35 - 圖3-35 導線參數smith chart - 35 - 圖3-36 de-embedding與原生元件電容值比較 - 36 - 圖3-37 de-embedding與原生元件Q值比較 - 36 - 圖4-1 隔離平台光罩圖 - 39 - 圖4-2 Mesa Isolation完成後示意圖 - 39 - 圖4-3 Ohmic Contact光罩圖案 - 41 - 圖4-4 Ohmic Contact完成後示意圖 - 41 - 圖4-5 gate光罩圖案 - 43 - 圖4-6 gate完成後示意圖 - 43 - 圖4-7 1st Passivation完成後示意圖 - 44 - 圖4-8 Via 1光罩圖案 - 45 - 圖4-9 Via 1完成後示意圖 - 46 - 圖4-10 Metal 1光罩圖案 - 47 - 圖4-11 Metal 1完成後示意圖 - 47 - 圖4-12襯墊層完成後示意圖 - 48 - 圖4-13 Via 2的光罩圖案 - 49 - 圖4-14 Via 2完成後示意圖 - 49 - 圖4-15 Metal 2光罩圖案 - 50 - 圖4-16 Metal 2完成後示意圖 - 51 - 圖4-17 3rd Passivation完成後示意圖 - 52 - 圖4-18 Via 3光罩圖案 - 53 - 圖4-19 Via 3完成後示意圖 - 53 - 圖4-20 gate線寬的SEM圖 - 54 - 圖4-21為gate與ohmic間距的SEM圖 - 55 - 圖4-22 Width=25μm元件顯微鏡圖 - 55 - 圖4-23 Width=50μm元件顯微鏡圖 - 56 - 圖4-24 Width=75μm元件顯微鏡圖 - 56 - 圖4-25 總電阻對金屬間距作圖 - 57 - 圖5-1傳輸線模擬結果與量測結果比較圖 - 59 - 圖5-2 S11比較圖 - 60 - 圖5-2 S21比較圖 - 61 - 圖5-3 S12比較圖 - 62 - 圖5-4 S22比較圖 - 62 - 圖5-5 更改參數後S21比較圖 - 63 - 圖5-6 A#01特徵阻抗圖 - 64 - 圖5-5 A#01 S參數圖 - 66 - 圖5-7 A#02特徵阻抗圖 - 67 - 圖5-8 A#02 S參數圖 - 69 - 圖5-9 A#03特徵阻抗圖 - 69 - 圖5-10 A#03 S參數圖 - 71 - 圖5-11 A#04特徵阻抗圖 - 72 - 圖5-12 A#04 S參數圖 - 74 - 圖5-13 A#05特徵阻抗圖 - 74 - 圖5-14 A#05 S參數圖 - 76 - 圖5-15 B#01電容值及Q值 - 78 - 圖5-16 B#02電容值及Q值 - 79 - 圖5-17 B#03電容值及Q值 - 80 - 圖5-18 B#04電容值及Q值 - 81 - 圖5-19 B#05電容值及Q值 - 82 - 圖5-20 B#06電容值及Q值 - 83 - 圖5-21 B#07電容值及Q值 - 84 - 圖5-22 B#08電容值及Q值 - 85 - 圖5-23 電容崩潰電壓 - 86 - 圖5-24 B#03 模擬的電容特性與實際電容特性比較圖 - 88 - 圖5-25 B#03 改善模擬參數後比較圖 - 89 - 圖5-26 ADS等校電路圖 - 90 - 圖5-27 ADS等校電路與量測結果比較 - 91 - 圖5-28 A#03與B#06並聯的電路圖 - 92 - 圖5-29 A#03與B#06並聯的電路模擬與實際結果S11比較圖 - 93 - 圖5-30 改善參數後S11比較圖 - 94 - 圖5-31 A#03與B#02串聯後與電感並聯的電路圖 - 95 - 圖5-32 A#03與B#02串聯後與電感並聯模擬與實際結果S11比較圖 - 95 - 圖5-33 改善參數後S11比較圖 - 96 - 圖5-34 並聯電容光罩圖 - 97 - 圖5-35 模擬三種電容的容值比較圖 - 98 - 圖5-36 模擬三種電容的Q值比較圖 - 98 - 圖5-37 三種電容的實際容值比較圖 - 99 - 圖5-38 三種電容的實際Q值比較圖 - 99 - 圖5-39 C#01 IGS、IDS及gm對VGS作圖 - 101 - 圖5-40 C#02 IGS、IDS及gm對VGS作圖 - 101 - 圖5-41 C#03 IGS、IDS及gm對VGS作圖 - 102 - 圖5-42 C#01 IDS對VDS作圖 - 102 - 圖5-43 C#02 IDS對VDS作圖 - 103 - 圖5-44 C#03 IDS對VDS作圖 - 103 - 圖5-45 D#01高頻量測 - 105 - 圖5-46 D#02高頻量測 - 105 - 圖5-47 D#03高頻量測 - 106 - 圖5-48 D#01功率量測 - 106 - 圖5-49 D#02功率量測 - 107 - 圖5-50 D#02功率量測 - 107 - 圖5-51 容值比較圖 - 108 - 圖5-52 Q值比較圖 - 109 -   表目錄 表格2-1 Si、SiC、GaAs、GaN材料特性比較[11] - 3 - 表格2-2 不同基板GaN的JFOM比較 - 6 - 表格3-1 離子佈植參數 - 13 - 表格3-2 1st Passivation參數 - 15 - 表格3-3 Metal 1蒸鍍參數 - 16 - 表格3-4 襯墊層製程參數 - 20 - 表格3-5 Via 1蝕刻參數 - 21 - 表格3-6 Metal 2蒸鍍參數 - 24 - 表格3-7 3rd Passivation參數 - 27 - 表格3-8 Via 2蝕刻參數 - 28 - 表格4-1 Mesa Isolation蝕刻參數 - 39 - 表格4-2 Ohmic Contact參數 - 40 - 表格4-3 gate蒸鍍參數 - 42 - 表格5-1 本次研究傳輸線的尺寸條件 - 63 - 表格5-2 本次研究電容的尺寸條件 - 76 - 表格5-3 直流量測主動元件參數 - 95 - 表格5-4 功率量測主動元件參數 - 99 -

    References
    [1] X. Li, S. Gao, Q. Zhou, X. Liu, W. Hu and H. Wang, “Fabrication and performance of Ti/Al/Ni/TiN Au-free ohmic contacts for undoped AlGaN/GaN HEMT,” IEEE Trans. Electron Devices, vol. 67, no. 5, pp. 1959-1964, May 2020..
    [2] X. Kong, K. Wei, G. Liu, and X. Liu, “Role of Ti/Al relative thickness in the formation mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures,” J. Phys. D, Appl. Phys., vol. 45, no. 26, Jul. 2012.
    [3] M. Fan et al., “Ultra-low contact resistivity of < 0.1Ω ∙ mm for Au-free TixAly alloy contact on non-recessed i-AlGaN/GaN,” IEEE Electron Device Lett., vol. 41, no. 1, pp. 143-146, Jan. 2020.
    [4] H. Huang, Y. C. Liang, G. S. Samudra and C. L. L. Ngo, “Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 569-571, May 2014.
    [5] W. Jatal, U. Baumann, K. Tonisch, F. Schwierz and J. Pezoldt, “High-frequency performance of GaN high-electron mobility transistors on 3C-SiC/Si substrates with Au-free ohmic contacts,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 123-125, Feb. 2015.
    [6] D. W. Seo, H. G. Choi, J. Twynam, K. M. Kim, J. S. Yim, S.-W. Moon, S. Jung, J. Lee, and S. D. Roh, “600 V-18 A GaN Power MOS-HEMTs on 150 mm Si Substrates With Au-Free Electrodes,” IEEE Electron Device Letters, vol. 35, no. 4, pp. 446-448, Apr. 2014.
    [7] S. Lenci et al., “Au-free AlGaN/GaN power on 8-in Si substrate with gated edge termination,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 1035–1037, Aug. 2013.
    [8] A. Firrincieli, B. De Jaeger, S. You, D. Wellekens, M. Van Hove, and S. Decoutere, “Au-free low temperature ohmic contacts for AlGaN/GaN power devices on 200 mm Si substrates,” Jpn. J. Appl. Phys., vol. 53, no. 4S, 2014.
    [9] J. Zhang et al., “Ultralow-contact-resistance Au-free ohmic contacts with low annealing temperature on AlGaN/GaN heterostructures,” IEEE Electron Device Lett., vol. 39, no. 6, pp. 847–850, Jun. 2018.
    [10] A. Constant, J. Baele, P. Coppens, W. Qin, H. Ziad, E. De Backer, and M. Tack, “Impact of Ti/Al atomic ratio on the formation mechanism of non-recessed Au-free ohmic contacts on AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 120, no. 10, 2016.
    [11] A. A. Burk Jr., M. J. O'Loughlin, R. R. Siergiej, A. K. Agarwal, S. Sriram, R. C. Clarke, M. F. MacMillan, V. Balakrishna, C. D. Brandt, “SiC and GaN wide bandgap semiconductor materials and devices,” Solid-State Electronics, Vol. 43, pp. 1459-1464, 1999.
    [12] B. Gelmont, K. Kim, and M. Shur, “Monte carlo simulation of electron transport in Gallium Nitride”, J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.Ambacher, “Growth and applications of group III-nitrides,” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
    [13] M. E. Coltrin and R. J. Kaplar, “Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices,” J. Appl. Phys. 121, 2017.
    [14] H. W. Jang, C. M. Jeon, K. H. Kim, J. K. Kim, S.-B. Bae, J.-H. Lee, J. W. Choi, and J.-L. Lee, “Mechanism of two-dimensional electron gas formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 81, pp. 1249–1251, 2002.
    [15] M. J. Murphy, B. E. Foutz, K. Chu, H. Wu, W. Yeo, W. J. Schaff, O. Ambacher, L. F. Eastman, T. J. Eustis, R. Dimitrov, M. Stutzmann & W. Rieger, “Normal and Inverted Algan/Gan Based Piezoelectric Field Effect Transistors Grown by Plasma Induced Molecular Beam Epitaxy,” MRS Internet Journal of Nitride Semiconductor Research volume 4, pages840–845 (1999)
    [16] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222–3233 (1999).
    [17] F. Sacconi, A. D. Carlo, P. Lugli, H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions On Electron Devices, Vol. 48, No. 3, pp. 450-457, 2001.
    [18] David M. Pozar, Microwave Engineering, Wiley, 2011.
    [19] H.-Y. Cho, J.-K. Huang, C.-K. Kuo, S. Liu, and C.-Y. Wu, “A novel transmission line de-embedding technique for RF device characterization,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3160-3167, Dec. 2009.
    [20] H. Cho and D. Burk, “A three-step method for the de-embedding of highfrequency S-parameter measurements,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1370–1375, Jun. 1991.
    [21] T. E. Kolding, “A four-step method for de-embedding gigahertz on-wafer CMOS measurements,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 734–740, Apr. 2000.
    [22] E. P. Vandamme, D. M. M.-P. Schreurs, and C. van Dinther, “Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test-structures,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 737–742, Apr. 2001.
    [23] J. Cha, J. Cha, and S. Lee, “Uncertainty analysis of two-step and three-step methods for deembedding on-wafer RF transistor measurements,” IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2195–2201, Aug. 2008.
    [24] Q. Liang, J. D. Cressler, G. Niu, Y. Lu, G. Freeman, D. C. Ahlgren, R. M. Malladi, K. Newton, and D. L. Harame, “A simple four-port parasitic de-embedding methodology for high-frequency scattering parameter and noise characterization of SiGe HBTs,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2165–2174, Nov. 2003.
    [25] X. Wei, G. Niu, S. L. Sweeney, Q. Liang, X. Wang, and S. S. Taylor, “A general 4-port solution for 110 GHz on-wafer transistor measurements with or without Impedance Standard Substrate (ISS) calibration,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2706–2714, Oct. 2007.
    [26] T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183–1200, May 2006.
    [27] A. M. Mangan, S. P. Voinigescu, M. T. Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC design,” IEEE Trans.Electron Device, vol. 53, no. 2, Feb. 2006.

    QR CODE