簡易檢索 / 詳目顯示

研究生: 姜焙元
論文名稱: 佈於大域體上橢圓曲線的扭點
Torsion Points on Elliptic Curves over Global Fields
指導教授: 于靖
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 34
中文關鍵詞: 橢圓曲線扭點
外文關鍵詞: Elliptic Curves, Torsion points
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是計算橢圓曲線在大域體上扭點的計算。計算橢圓曲線上的扭點我們主要用兩種方法,一種是利用division polynomial,而另一種則是利用推廣的Lutz-Nagell定理


    Let $E$ be an elliptic curve defined over a global field $K$. By a global field $K$ we mean an algebraic number field
    or an algebraic function field of one variable over a field $k$ as its field of constants. For technical reason
    we may assume that our function field has characteristic $\neq 2$.
    Our main interest is to compute torsion points of $E$ over $K$. In this paper we provide two methods. One is
    to use division polynomials, and the other is to use the generalized Nagell-Lutz theorem.

    Section 1. Introduction Section 2. Division Polynomials Section 3. Torsion Points over Q Section 4. Torsion Points over local fields of characterisitc $\neq$ 2 Section 5. Torsion Points over number fields Section 6. Torsion Points over algebraic function fields of characteristic $\neq$ 2 Section 6-1. Over function fields of characteristic >3 Section 6-1. Over function fields of characteristic 3 Section 7. Appendix Section 8. Reference

    [1] Henri Cohen.
    A Course in Computational Algebraic Number Theory. GTM 138 Springer-Verlag,
    Berlin Heidelberg, 1993
    [2] I.F.Blake, G.Seroussi, N.P.Smart.
    Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series;
    265, 1999
    [3] Joseph H. Sliverman.
    The Arithmetic of Elliptic Curves. GTM 106 Springer-Verlag, New York, 1986.
    [4] Serge Lang.
    Elliptic curves :Diophantine Analysis. Springer-Verlag, Berlin, 1978
    [5] Susanne Schmitt * Host G.Zimmer.
    Elliptic Curves :A Computational Approach. Berlin ;Walter de Gruyter,New York,
    2003.
    [6] Washington, Lawrence C.
    Elliptic Curves :Number theory and Cryptography. Chapman & Hall/CRC, 2003.
    [7] Cassels, J.W.S: A note on the division values of }(u). Proc. Cambridge Phil. Soc.
    45, 167-172, 1949.
    [8] Cremona, J.E., Whitley, E.:Periods of cusp forms and elliptic curves over imaginary
    quadratic fields. Math. Comp. 62, 407 − 429, 1994.
    [9] Zimmer, H.G.: Torsion points on elliptic curves over a global field. Manuscripta
    Math. 29 , 119-145, 1979.
    [10] David A. Cox, Walter R. Parry.: Torsion in elliptic curves over k(t). Compositio
    Mathematica. Vol 41, Fasc 3, 337-354, 1980.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE