研究生: |
張格銘 Chang, Ke Ming |
---|---|
論文名稱: |
對稱共圓的五體中心構形 Symmetric co-circular five-body central configurations |
指導教授: |
陳國璋
Chen, Kuo Chang |
口試委員: |
鄭志豪
Teh, Jyh Haur 蔡亞倫 Tsai, Ya Lun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 8 |
中文關鍵詞: | 中心構形 |
外文關鍵詞: | central configuration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文中我們探討的是 Chenciner, A. 所提出的一個問題中的某個情況,Chenciner, A.提出的問題是:「共圓而且質心在其外接圓圓心的中型構形是否一定是正多邊形?」,這個問題在三體的情況是對的,不難證明;在四體的情況,由 Hampton, M. 在2003年給了肯定的答案;而我們討論的是五體且對稱的情況,並且證明「對稱、共圓且質心在其外接圓圓心的五體中心構形一定是正五邊形。」
In this paper, we study co-circular five-body central configurations with their center of mass at the center of the circumscribed circle. We shall show that in the symmetric case, the only central configuration satisfying these conditions is the regular pentagon with equal masses.
Albouy, A., On a paper of Moeckel on central configurations., Regul. Chaotic Dyn. 8, 133 - 142 (2003).
Albouy, A., Kaloshin, V., Finiteness of central configurations for five bodies in the plane., Ann. Math. 176, 535 - 588 (2012)
Chenciner, A., Are there perverse choreographs?, to appear in the proceedings of the 2001 HAMSYS Conference in Guanajuato, Mexico.
Chen, K.-C., Hsiao, J.-S., Strictly convex central configurations of the planar five-body problem., Trans. Amer. Math.
Hampton, M., Co-circular central configurations in the four-body problem., Equadiff 2003. Proceedings of the International Conference on Differential Equations, pp.
993 - 998. World Scientific Publishing Co., Singapore (2005)
Hampton, M., Moeckel, R. Finiteness of relative equilibria of the four-body problem., Invent. Math. 163, 289 - 312 (2006)
Moeckel, R., On central configurations., Math. Zeit., 205, 499 - 517. (1990)
Perko, L.M., Walter, E.L., Regular polygon solutions of the n-body problem., Proc. Amer. Mat. Soc., 94, 301-309. (1985)
\bibitem{Williams, W.L.} Williams, W.L., Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc., 44, 563 - 579, (1938)