研究生: |
劉健良 |
---|---|
論文名稱: |
胃幽門螺旋桿菌尿嘧啶核甘酸激酶的表現質體建構以及功能分析 Molecular cloning and functional characterization of uridine monophosphate kinase from Helicobacter pylori |
指導教授: |
黃海美
Haimei Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 胃幽門螺旋桿菌 、尿嘧啶核甘酸激酶 、溶解度 、金屬離子 、同源性 、三磷核酸 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尿嘧啶核甘酸激酶(UMP kinases)在細菌中扮演重要且是個生存基本的酵素,它參與有關細菌內部三磷核酸的合成。被廣為人知的是它通常以六聚體的型態存在,而且由於它有很低的相似度和其他真核生物的單磷酸根合成酶,所以可以當成對抗菌類生長的抗生素研發目標。在本研究中,我們將胃幽門螺旋桿菌(菌株為26695)中的尿嘧啶核甘酸激酶利用基因重組的方法將它大量表現並純化。蛋白的分子量為27.562Kd,以及它的等電點為8,67.
重組的HP0777蛋白質在pH=8時有較低的溶解度(小於0.5ug /ul),但是它的溶解度可藉由提高值到9來提高。尿嘧啶核甘酸激酶通常需要2mM的鎂離子來參與反應。尿嘧啶核甘酸激酶最好的反應溫度在30℃,如果將酵素放在65℃15分鐘後再測其活性在30℃的環境下,大概就只剩下10%的活性了。
重組蛋白HP0777的尿嘧啶核甘酸激酶活性被GTP所激活而被UTP所抑制。HP0777的酵素活性在GTP的濃度為0.15 mM時,酵素活型可被提高約15倍左右,相對於大腸桿菌在相關的文獻中提出GTP大概只能提高3~4倍左右。而UTP為1 mM在大約可以抑制70%左右的酵素活性。
存在錳離子2 mM的反應環境中相對於鎂離子的存在,重組蛋白HP0777的尿嘧啶核甘酸激酶活性大概為兩倍。而在存在鈷離子或是鎳離子的環境中相對於存在鎂離子的時候,活性分別大約為50%或7%。而存在鈣或銅離子時則無法測得酵素活性。而在測試何種pH值的實驗中,在存在鎂離子的情況下,在pH9有較高的活性,錳離子則是在pH7.4。
雖然HP0777的蛋白質序列相對於其它菌株的尿嘧啶核甘酸激酶大概有50%的同源性、70%的相似性。可是它卻有需要低濃度的GTP卻能大大提高其酵素活性以及存在錳離子的環境性有較高的酵素活性的兩大新發現。
Bacterial UMP kinases are important and essential enzymes which are involved in the multistep synthesis of nucleoside triphosphates. The known homohexamer from bacteria with no similar with eukaryotic organisms, might be a target for designing new antibacterial drugs. In this study, the HP0777 gene encoding UMP kinase in Helicobacter pylori strain 26695 was overexpressed. This protein has a molecular mass of 27.56 kD, and the Isoelectric point (pI) determination of 8.67.
The recombinant HP0777 has low solubility at pH = 8 (≦ 0.5ug of protein/ul), but its solubility can be increased at an alkaline pH of 9. Rec-HP0777 showed UMP kinase activity in the presence of 2 mM MgCl2. The maximum UMP kinase activity of this protein appeared in reaction at 30 oC. About 10% enzyme activity remained after recombinant protein kept at 65 oC for 15 min and assayed at 30 oC.
UMP kinase activity of rec-HP0777 protein was regulated by the activator GTP and inhibited by UTP. GTP at 0.15 mM could increase more than fifteen folds enzyme activity of rec-HP0777 protein, in contrast, 1 mM GTP increased 3-4 folds UMP kinase activity in E. coli from known published data. UTP at 1 mM decreased 70% of the UMP kinase activity for rec-HP0777 protein.
UMP kinase activity of rec-HP0777 protein increased twice when magnesium was replaced with manganese at 2 mM. The activity reduced to 50%, 7% while cobalt or nickel ions were applied into reaction. When calcium or copper ions were substituted for manganese ions in the reaction mixture, the enzyme activity was not detectable. Determination of the enzyme activity at different pH value (6.5-9.5) indicated that the maximum UMP kinase activity of rec-HP0777 protein appeared in reaction buffer at pH 9.0 in present of magnesium and at pH 7.4 in present of manganese.
Although the amino acid sequence of HP0777 shares almost 50% identity and 70% similarity to several known UMP kinase protein sequence from bacteria, the low concentration of GTP activator and manganese preference instead of magnesium for UTP kinase activity are novel discovery for HP0777 protein.
Baek, Y.H., and T. Nowak. 1982. Kinetic evidence for a dual cation role for muscle pyruvate kinase. In Arch Biochem Biophys. Vol. 217. 491-7.
Baker, K.E., K.P. Ditullio, J. Neuhard, and R.A. Kelln. 1996. Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. J Bacteriol. 178:7099-105.
Bertrand, T., P. Briozzo, L. Assairi, A. Ofiteru, N. Bucurenci, H. Munier-Lehmann, B. Golinelli-Pimpaneau, O. Barzu, and A.M. Gilles. 2002. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J Mol Biol. 315:1099-110.
Briozzo, P., C. Evrin, P. Meyer, L. Assairi, N. Joly, O. Barzu, and A.M. Gilles. 2005. Structure of Escherichia coli UMP kinase differs from that of other nucleoside monophosphate kinases and sheds new light on enzyme regulation. J Biol Chem. 280:25533-40.
Briozzo, P., B. Golinelli-Pimpaneau, A.M. Gilles, J.F. Gaucher, S. Burlacu-Miron, H. Sakamoto, J. Janin, and O. Barzu. 1998. Structures of escherichia coli CMP kinase alone and in complex with CDP: a new fold of the nucleoside monophosphate binding domain and insights into cytosine nucleotide specificity. Structure. 6:1517-27.
Bucurenci, N., L. Serina, C. Zaharia, S. Landais, A. Danchin, and O. Barzu. 1998. Mutational analysis of UMP kinase from Escherichia coli. J Bacteriol. 180:473-7.
Bult, H. 1996. Nitric oxide and atherosclerosis: possible implications for therapy. Mol Med Today. 2:510-8.
Burgers, P.M., and F. Eckstein. 1979. A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J Biol Chem. 254:6889-93.
Cooperman, B.S., A. Panackal, B. Springs, and D.J. Hamm. 1981. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry. 20:6051-60.
Covacci, A., J.L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science. 284:1328-33.
Curbo, S., M. Amiri, F. Foroogh, M. Johansson, and A. Karlsson. 2003. The Drosophila melanogaster UMP-CMP kinase cDNA encodes an N-terminal mitochondrial import signal. Biochem Biophys Res Commun. 311:440-5.
Dange, V., R.B. Van Atta, and S.M. Hecht. 1990. A Mn2(+)-dependent ribozyme. Science. 248:585-8.
Dreusicke, D., and G.E. Schulz. 1988. The switch between two conformations of adenylate kinase. J Mol Biol. 203:1021-8.
Dunn, B.E., H. Cohen, and M.J. Blaser. 1997. Helicobacter pylori. Clin Microbiol Rev. 10:720-41.
Fassy, F., O. Krebs, M. Lowinski, P. Ferrari, J. Winter, V. Collard-Dutilleul, and K. Salahbey Hocini. 2004. UMP kinase from Streptococcus pneumoniae: evidence for co-operative ATP binding and allosteric regulation. Biochem J. 384:619-27.
Fleischmann, T. 1995. [Patients with stomas among the severely handicapped in our society]. Krankenpfl J. 33:142-5.
Fraser, C.M., J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann, C.J. Bult, A.R. Kerlavage, G. Sutton, J.M. Kelley, R.D. Fritchman, J.F. Weidman, K.V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T.R. Utterback, D.M. Saudek, C.A. Phillips, J.M. Merrick, J.F. Tomb, B.A. Dougherty, K.F. Bott, P.C. Hu, T.S. Lucier, S.N. Peterson, H.O. Smith, C.A. Hutchison, 3rd, and J.C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium. Science. 270:397-403.
Gagyi, C., N. Bucurenci, O. Sirbu, G. Labesse, M. Ionescu, A. Ofiteru, L. Assairi, S. Landais, A. Danchin, O. Barzu, and A.M. Gilles. 2003. UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. Eur J Biochem. 270:3196-204.
Gagyi, C., M. Ionescu, P. Gounon, H. Sakamoto, J.C. Rousselle, and C. Laurent-Winter. 2004. Identification and immunochemical location of UMP kinase from Bacillus subtilis. Curr Microbiol. 48:62-7.
Ingraham, J.L., and J. Neuhard. 1972. Cold-sensitive mutants of Salmonella typhimurium defective in uridine monophosphate kinase (pyrH). J Biol Chem. 247:6259-65.
Ivell, R., G. Sander, and A. Parmeggiani. 1981. Modulation by monovalent and divalent cations of the guanosine-5'-triphosphatase activity dependent on elongation factor Tu. Biochemistry. 20:6852-9.
Jong, A., Y. Yeh, and J.J. Ma. 1993. Characteristics, substrate analysis, and intracellular location of Saccharomyces cerevisiae UMP kinase. Arch Biochem Biophys. 304:197-204.
Kaneko, S., Y. Miyazaki, T. Yasuda, and K. Shishido. 1998. Cloning, sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1, encoding UMP-CMP kinase, the homologue of Saccharomyces cerevisae URA6 gene. Gene. 211:259-66.
Kazakov, S., and S. Altman. 1992. A trinucleotide can promote metal ion-dependent specific cleavage of RNA. Proc Natl Acad Sci U S A. 89:7939-43.
Kholti, A., D. Charlier, D. Gigot, N. Huysveld, M. Roovers, and N. Glansdorff. 1998. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol. 280:571-82.
Labesse, G., N. Bucurenci, D. Douguet, H. Sakamoto, S. Landais, C. Gagyi, A.M. Gilles, and O. Barzu. 2002. Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun. 294:173-9.
Lacy, B.E., and J. Rosemore. 2001. Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr. 131:2789S-2793S.
Landais, S., P. Gounon, C. Laurent-Winter, J.C. Mazie, A. Danchin, O. Barzu, and H. Sakamoto. 1999. Immunochemical analysis of UMP kinase from Escherichia coli. J Bacteriol. 181:833-40.
Leupold, C.M., R.S. Goody, and A. Wittinghofer. 1983. Stereochemistry of the elongation factor Tu X GTP complex. Eur J Biochem. 135:237-41.
Liljelund, P., and F. Lacroute. 1986. Genetic characterization and isolation of the Saccharomyces cerevisiae gene coding for uridine monophosphokinase. Mol Gen Genet. 205:74-81.
Lipscomb, W.N. 1994. Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv Enzymol Relat Areas Mol Biol. 68:67-151.
Lock, R.A., G.W. Coombs, T.M. McWilliams, J.W. Pearman, W.B. Grubb, G.J. Melrose, and G.M. Forbes. 2002. Proteome analysis of highly immunoreactive proteins of Helicobacter pylori. Helicobacter. 7:175-82.
Marco-Marin, C., J.M. Escamilla-Honrubia, and V. Rubio. 2005a. First-time crystallization and preliminary X-ray crystallographic analysis of a bacterial-archaeal type UMP kinase, a key enzyme in microbial pyrimidine biosynthesis. Biochim Biophys Acta. 1747:271-5.
Marco-Marin, C., F. Gil-Ortiz, and V. Rubio. 2005b. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol. 352:438-54.
Marshall, B.J., and J.R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311-5.
Mildvan, A.S. 1987. Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium. 6:28-33.
Montecucco, C., E. Papini, M. de Bernard, and M. Zoratti. 1999. Molecular and cellular activities of Helicobacter pylori pathogenic factors. FEBS Lett. 452:16-21.
Muller-Dieckmann, H.J., and G.E. Schulz. 1994. The structure of uridylate kinase with its substrates, showing the transition state geometry. J Mol Biol. 236:361-7.
Munier-Lehmann, H., A. Chaffotte, S. Pochet, and G. Labesse. 2001. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci. 10:1195-205.
Pasti, C., S. Gallois-Montbrun, H. Munier-Lehmann, M. Veron, A.M. Gilles, and D. Deville-Bonne. 2003. Reaction of human UMP-CMP kinase with natural and analog substrates. Eur J Biochem. 270:1784-90.
Ramon-Maiques, S., A. Marina, F. Gil-Ortiz, I. Fita, and V. Rubio. 2002. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure. 10:329-42.
Ramon-Maiques, S., A. Marina, M. Uriarte, I. Fita, and V. Rubio. 2000. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. J Mol Biol. 299:463-76.
Rappuoli, R., M. Pizza, and A. Covacci. 1999. Metronidazole resistance in Helicobacter pylori. Clin Infect Dis. 28:937-9.
Sakamoto, H., S. Landais, C. Evrin, C. Laurent-Winter, O. Barzu, and R.A. Kelln. 2004. Structure-function relationships of UMP kinases from pyrH mutants of Gram-negative bacteria. Microbiology. 150:2153-9.
Sali, A., and T.L. Blundell. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 234:779-815.
Serina, L., C. Blondin, E. Krin, O. Sismeiro, A. Danchin, H. Sakamoto, A.M. Gilles, and O. Barzu. 1995. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Biochemistry. 34:5066-74.
Serina, L., N. Bucurenci, A.M. Gilles, W.K. Surewicz, H. Fabian, H.H. Mantsch, M. Takahashi, I. Petrescu, G. Batelier, and O. Barzu. 1996. Structural properties of UMP-kinase from Escherichia coli: modulation of protein solubility by pH and UTP. Biochemistry. 35:7003-11.
Telford, J.L., A. Covacci, R. Rappuoli, and P. Chiara. 1997. Immunobiology of Helicobacter pylori infection. Curr Opin Immunol. 9:498-503.
Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 40:27-36.
Tomb, J.F., O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, E.K. Hickey, D.E. Berg, J.D. Gocayne, T.R. Utterback, J.D. Peterson, J.M. Kelley, M.D. Cotton, J.M. Weidman, C. Fujii, C. Bowman, L. Watthey, E. Wallin, W.S. Hayes, M. Borodovsky, P.D. Karp, H.O. Smith, C.M. Fraser, and J.C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388:539-47.
Verdu, E.F., D. Armstrong, R. Fraser, F. Viani, J.P. Idstrom, C. Cederberg, and A.L. Blum. 1995. Effect of Helicobacter pylori status on intragastric pH during treatment with omeprazole. Gut. 36:539-43.
Vermote, C.L., and S.E. Halford. 1992. EcoRV restriction endonuclease: communication between catalytic metal ions and DNA recognition. Biochemistry. 31:6082-9.
Vermote, C.L., I.B. Vipond, and S.E. Halford. 1992. EcoRV restriction endonuclease: communication between DNA recognition and catalysis. Biochemistry. 31:6089-97.
Yamanaka, K., T. Ogura, H. Niki, and S. Hiraga. 1992. Identification and characterization of the smbA gene, a suppressor of the mukB null mutant of Escherichia coli. J Bacteriol. 174:7517-26.
Zhou, L., and R. Thornburg. 1998. Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding. Arch Biochem Biophys. 358:297-302.